ImageVerifierCode 换一换
格式:PPT , 页数:111 ,大小:1.98MB ,
资源ID:13227273      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13227273.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(第二章导数与微分.ppt)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第二章导数与微分.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,1.正确理解导数与微分的概念。,2.,牢固的掌握基本初等函数的导数公式。,3.熟练地运用函数的和、积、差、商与复合函数的求导法则。,4.会求初等函数的导数。,y,x,o,从上面所讨论的两个问题看出,非匀速直线运动的速度和切线的斜率都归结为如下的极限:,解:,这个公式对于,n,为任意实数,u,也成立,解:,同理可证:,解:,解:,解:,在,x=0,处不可导,不存在,解:,解:,同理可证:,解:,解:,图象:,解:,同理可证:,即,因变量对自变量求导,等于因变量对中间变量求导,乘以中间变量对自变量求导,.,证

2、初等函数是由常数和基本初等函数经过有限次四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数。,我们把这些导数公式归纳如下:,三阶导数的导数称为四阶导数,二阶和二阶以上的导数统称为,高阶导数,.,二阶导数的导数称为三阶导数,上式称为,莱布尼茨公式,:,一般的:,第四节、隐函数的导数,由参数方程所确定的函数 的导数,相关变化率。,一、隐函数的导数.,等号左端是因变量的符号,而右端是含有自变量的式子,当自变量取定义域内任一值时,由这式子能确定对应的函数值,用这种方式表达的函数叫做,显函数,。,有些函数的表达方式却不是这样,例如,方程表示一个函数,因为当变量,x,在 内取值时,变量,y,有

3、确定的值与之对应。这样的函数称为,隐函数,.,一般的,如果在方程 中,当,x,取某区间内的任一值时,相应地总有满足这方程的唯一的,y,值存在,那末就说方程 在该区间内确定了一个隐函数。,介绍对数求导法:,二、由参数方程所确定的函数的导数,例如,消去参数,问题,:,消参困难或无法消参如何求导,?,由复合函数及反函数的求导法则得,切线方程:,法线方程:,三、相关变化率,p111,相关变化率,实例,:,正方形金属薄片受热后面积的改变量,.,定义,由定义知,:,定理,证,(1),必要性,可微与可导的关系,(2),充分性,M,N,T,),几何意义,:,(,如图,),P,求法,:,计算函数的导数,乘以自变量的微分,.,1.,基本初等函数的微分公式,2.,函数和、差、积、商的微分法则,微分形式的不变性,结论,:,微分形式的不变性,解,1.,计算函数增量的近似值,例,1,解,2.,计算函数的近似值,例,1,解,解:,常用近似公式,证明,例,3,解,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服