ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:1.40MB ,
资源ID:13188381      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/13188381.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(常微分方程2.2 变量可分离方程.ppt)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

常微分方程2.2 变量可分离方程.ppt

1、形如,(,2.2.1,),的方程称为变量可分离方程。,2.2,变量可分离方程,这里,是连续函数,.,该方程的特点,:,方程的右端是两个独立的一元函数之积,.,1,一、,变量可分离方程的求解,当,方程(,2.2.1,)两边同除以,得,这样对上式两边积分得到,例,2.2.1,求微分方程,的通解。,2,注:求方程通解时,我们假设,若,时得,y,值也可能为方程的解。,解:变量分离后得,上式两边积分得,整理得,其中,该解在,无定义,故通解在,中有定义,.,所以要考虑 的情况,,该方程对应的解我们称为常数解,.,3,例,2.2.2,求微分方程,的通解,.,解,:,变形为,积分得,:,求积分得,:,解得

2、4,记,则,因为,可得,故所有的解为,:,5,练习,解,通解:,6,二、齐次方程,齐次函数,:,函数,称为,m,次齐次函数,如果,齐次方程,:,形如,的方程称为齐次方程,。,引入一个新变量化为变量可,分离方程。,求解思想,:,7,例,2.2.3,求下面初始值问题,解:方程为齐次方程,令,求导后得,分离变量得,事实上,令,则,故有,即,8,积分上式得,用,代入得,利用初始条件,可定出,代入上式解出,9,求解微分方程,微分方程通解:,解,练习,10,解方程,解,改写方程:,齐次方程,方程变为:,两边积分:,练习,11,分析,解,方程变为,齐次方程,练习,12,两边积分,通解:,分离变量,13

3、三、可化为齐次方程的方程,形如,的方程可化为齐次方程,.,其中,都是常数,.,1.,当,时,此方程就是齐次方程,.,2.,当,时,并且,(1),14,此时二元方程组,有惟一解,引入新变量,此时,方程可化为齐次方程,:,15,(2),若,则存在实数,使得,:,或者有,不妨是前者,则方程可变为,令,则,16,3.,对特殊方程,令,则,17,例,2.2.4,求方程,的通解。,解:解方程组,得,令,代入原方程可得到齐次方程,令,得,18,还原后得原方程通解为,变量分离后积分,19,解,代入原方程得,非齐次型方程,.,方程组,齐次型方程,.,方程变为,练习,20,分离变量法得,原方程通解,21,例,:

4、雪球融化问题,设雪球在融化时体积的变化率与表面积成比,例,且融化过程中它始终为球体,该雪球在,开始时的半径为,6,cm,,,经过,2,小时后,其半径缩,小为,3,cm,。,求雪球的体积随时间变化的关系。,解,:,设,t,时刻雪球的体积为,,表面积为,球体与表面积的关系为,2.2.3,变量可分离方程的应用,22,引入新常数,再利用题中的条件得,分离变量积分得方程得通解为,再利用条件,确定出常数,C,和,r,代入关系式得,t,的取值在,之间。,23,游船上的传染病人数,.,一只游船上有,800,人,12,小时后有,3,人发病,.,故感染者不能被及时隔离,.,设传染病的传播速度与受感染的人数及,未

5、受感染的人数之积成正比,.,一名游客患了某种传染病,由于这种传染病没有早期症状,直升机将在,60,至,72,小时,将疫苗运到,试估算疫苗运到时患此传染病的人数,.,解,设,y,(,t,),表示发现首例病人后,t,小时的,感染人数。,其中,k,0,为比例常数,.,可分离变量微分方程,初始条件,:,练习,24,两边积分,通解,分离变量,25,直升机将在,60,至,72,小时将疫苗运到,试估算疫苗运到时患此传染病的人数。,26,车灯的反射镜面,-,旋转抛物面,解,练习,27,两边积分,28,抛物线,29,P.50 1,(,1,,,4,,,5,,,9,,,15,),2,(,1,,,3,),,6,作 业,30,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服