1、期末测试题考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分在每小题给出的四个选项中,只有一项是符合要求的1在直角坐标系中,已知A(1,2),B(3,0),那么线段AB中点的坐标为( )A(2,2)B(1,1)C(2,2)D(1,1)正视图侧视图俯视图(第2题)2右面三视图所表示的几何体是( )A三棱锥B四棱锥C五棱锥D六棱锥3如果直线x2y10和ykx互相平行,则实数k的值为( )A2BC2D4一个球的体积和表面积在数值上相等,则该球半径的数值为( )A1B2C3D45下面图形中是正方体展开图的是( ) ABCD(第5题)6圆x2y22x4y40的圆心坐
2、标是( )A(2,4)B(2,4)C(1,2)D(1,2)7直线y2x1关于y轴对称的直线方程为( ) Ay2x1By2x1Cy2x1Dyx18已知两条相交直线a,b,a平面 a,则b与 a 的位置关系是( )Ab平面aBb平面aCb平面aDb与平面a相交,或b平面a9在空间中,a,b是不重合的直线,a,b是不重合的平面,则下列条件中可推出ab的是( )Aaa,bb,abBaa,bbCaa,baDaa,ba10 圆x2y21和圆x2y26y50的位置关系是( )(第11题)A外切B内切C外离D内含11如图,正方体ABCDABCD中,直线DA与DB所成的角可以表示为( )ADDBBAD CCAD
3、BDDBC12 圆(x1)2(y1)22被轴截得的弦长等于( )A 1BC 2D 3A1B1C1ABEC(第13题)13如图,三棱柱A1B1C1ABC中,侧棱AA1底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )ACC1与B1E是异面直线BAC平面A1B1BACAE,B1C1为异面直线,且AEB1C1DA1C1平面AB1E14有一种圆柱体形状的笔筒,底面半径为4 cm,高为12 cm现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计) 如果每0.5 kg涂料可以涂1 m2,那么为这批笔筒涂色约需涂料A1.23 kgB1.76 kg
4、C2.46 kgD3.52 kg二、填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上15坐标原点到直线4x3y120的距离为 ABCDD1C1B1A1(第17题)16以点A(2,0)为圆心,且经过点B(1,1)的圆的方程是 17如图,在长方体ABCDA1B1C1D1中,棱锥A1ABCD的体积与长方体的体积之比为_18在平面几何中,有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点_三、解答题:本大题共3小题,共28分解答应写出文字说明,证明过程或演算步骤19已知直线l经过点(0,2),其倾
5、斜角是60(1)求直线l的方程;(2)求直线l与两坐标轴围成三角形的面积ACPBDE(第20题)20如图,在三棱锥PABC中,PC底面ABC,ABBC,D,E分别是AB,PB的中点(1)求证:DE平面PAC;(2)求证:ABPB;(3)若PCBC,求二面角PABC的大小21已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x3y290相切(1)求圆C的方程;(2)设直线axy50与圆C相交于A,B两点,求实数a的取值范围;(3) 在(2)的条件下,是否存在实数a,使得过点P(2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由参考答案一、选择题1B2D3D
6、4C5A6D7A8D9C10A11D12C13C14D二、填空题15 16(x2)2y210 171:3 18到四个面的距离之和为定值三、解答题19解:(1)因为直线l的倾斜角的大小为60,故其斜率为tan 60,又直线l经过点(0,2),所以其方程为xy20 (2)由直线l的方程知它在x轴、y轴上的截距分别是,2,所以直线l与两坐标轴围成三角形的面积S2ACPBDE(第20题)20(1)证明:因为D,E分别是AB,PB的中点,所以DEPA因为PA平面PAC,且DE平面PAC,所以DE平面PAC(2)因为PC平面ABC,且AB平面ABC,所以ABPC又因为ABBC,且PCBCC所以AB平面PB
7、C又因为PB平面PBC,所以ABPB (3)由(2)知,PBAB,BCAB,所以,PBC为二面角PABC的平面角因为PCBC,PCB90,所以PBC45,所以二面角PABC的大小为45 21解:(1)设圆心为M(m,0)(mZ)由于圆与直线4x3y290相切,且半径为5,所以,5,即|4m29|25因为m为整数,故m1故所求的圆的方程是(x1)2y225 (2)直线axy50即yax5代入圆的方程,消去y整理,得(a21)x22(5a1)x10由于直线axy50交圆于A,B两点,故4(5a1)24(a21)0,即12a25a0,解得a0,或a所以实数a的取值范围是(,0)(,) (3)设符合条件的实数a存在,由(2)得a0,则直线l的斜率为,l的方程为y(x2)4, 即xay24a0由于l垂直平分弦AB,故圆心M(1,0)必在l上所以1024a0,解得a由于(,),故存在实数a,使得过点P(2,4)的直线l垂直平分弦AB