ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:22.77KB ,
资源ID:12907527      下载积分:10.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12907527.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年大学通信工程(信号与系统)试题及答案.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年大学通信工程(信号与系统)试题及答案.doc

1、 2025年大学通信工程(信号与系统)试题及答案 (考试时间:90分钟 满分100分) 班级______ 姓名______ 第I卷(选择题 共30分) (总共10题,每题3分,每题只有一个正确答案,请将正确答案填在括号内) 1. 下列关于信号分类的说法,正确的是( ) A. 按照信号随时间的变化规律可分为确定信号和随机信号 B. 按照信号的能量特征可分为能量信号和功率信号,周期信号都是功率信号,非周期信号都是能量信号 C. 按照信号的取值特性可分为模拟信号和数字信号 D. 以上说法都不对 答案:A 2. 已知某连续时间信号f(t)=2c

2、os(2πt)+3sin(4πt),该信号的周期T为( ) A. 1 B. 2 C. 0.5 D. 0.25 答案:A 3. 单位冲激响应h(t)与系统函数H(s)的关系是( ) A. H(s)是h(t)的拉普拉斯变换 B. h(t)是H(s)的拉普拉斯逆变换 C. 二者没有直接关系 D. 以上都不对 答案:A 4. 信号f(t) = u(t + 1) - u(t - 1)的波形是( ) A. 宽度为2的矩形脉冲 B. 高度为1的矩形脉冲 C. 宽度为1的矩形脉冲 D. 高度为2的矩形脉冲 答案:A 5. 下列关于傅里叶变换性质的说法,错误

3、的是( ) A. 线性性质表明多个信号之和的傅里叶变换等于各信号傅里叶变换之和 B. 时移性质是指信号在时域中平移,其频谱也相应平移 C. 频移性质是指信号频谱在频域中平移,时域信号不变 D. 尺度变换性质中,信号在时域中压缩,频谱在频域中展宽 答案:C 6. 对于一个因果稳定的LTI系统,其系统函数H(s)的极点分布在s平面的( ) A. 右半平面 B. 左半平面 C. 虚轴上 D. 以上都不对 答案:B 7. 已知某系统的差分方程为y(n) - 0.5y(n - 1) = x(n),则该系统的单位脉冲响应h(n)为( ) A. (0.5)^n u(

4、n) B. 2(0.5)^n u(n) C. (0.5)^(n - 1) u(n) D. 2(0.5)^(n - 1) u(n) 答案:A 8. 信号f(t) = e^(-2t) u(t)的拉普拉斯变换F(s)为( ) A. 1/(s + 2) B. -1/(s + 2) C. 1/(s - 2) D. -1/(s - 2) 答案:A 9. 若x(t)是实信号,其傅里叶变换X(jω)具有( ) A. 共轭对称性 B. 共轭反对称性 C. 奇对称性 D. 偶对称性 答案:A 10. 对于一个二阶系统,其特征方程为s^2 + 2s + 5 = 0,

5、则该系统的固有频率为( ) A. 1 B. 2 C. 3 D. 4 答案:B 第II卷(非选择题 共70分) (总共4题,每题10分) 1. 已知信号f(t) = 2cos(3πt) + sin(5πt),求其傅里叶变换F(jω)。 2. 描述用拉普拉斯变换求解线性时不变系统响应的一般步骤。 3. 已知离散序列x(n) = {1, 2, 3, 4},h(n) = {1, 1, 1, 1},求它们的卷积和y(n) = x(n) h(n)。 4. 设有系统的微分方程为y''(t) + 3y'(t) + 2y(t) = x(t),初始条件y(0-)

6、 = 1,y'(0-) = 0,输入x(t) = e^(-t) u(t),求系统的零输入响应、零状态响应和全响应。 (总共2题,每题15分) 材料:已知某LTI系统的单位冲激响应h(t) = e^(-2t) u(t),输入信号x(t) = u(t) - u(t - 1)。 1. 求系统输出y(t)。 2. 讨论该系统的稳定性和因果性。 (总共2题,每题20分) 材料:考虑一个离散时间LTI系统,其差分方程为y(n) - 0.6y(n - 1) = x(n) - 0.5x(n - 1)。 1. 求系统函数H(z),并画出其零极点图。 2. 若输入x

7、n) = (0.8)^n u(n),求系统的零状态响应y_zs(n)。 答案: 1. 先求x(t)的傅里叶变换X(jω),再利用卷积定理Y(jω)=X(jω)H(jω),其中H(jω)是h(t)的傅里叶变换,最后求Y(jω)的傅里叶逆变换得y(t)。 2. 对系统方程进行拉普拉斯变换,结合初始条件得到象函数方程,求解象函数Y(s),再求其拉普拉斯逆变换得系统响应。 3. 按卷积和公式逐点计算y(n)。 4. 先求系统的零输入响应、零状态响应,再叠加得全响应。零输入响应:由特征方程求特征根,根据初始条件确定系数;零状态响应:对输入和系统函数进行拉普拉斯变换,利用卷积定理求解。 1. 先求x(t)的傅里叶变换X(jω),再利用卷积定理Y(jω)=X(jω)H(jω),其中H(jω)是h(t)的傅里叶变换,最后求Y(jω)的傅里叶逆变换得y(t)。 2. 稳定性:h(t)绝对可积,系统稳定;因果性:h(t)=0,t<0,系统因果。 1. 对差分方程进行z变换得H(z),根据H(z)确定零极点位置并画图。 2. 先求X(z),再利用Y_zs(z)=H(z)X(z)求Y_zs(z),最后求其z逆变换得y_zs(n)。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服