ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:724.50KB ,
资源ID:12801527      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12801527.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(宿迁市重点中学2025-2026学年高一上数学期末预测试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

宿迁市重点中学2025-2026学年高一上数学期末预测试题含解析.doc

1、宿迁市重点中学2025-2026学年高一上数学期末预测试题 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.设集合,则中元素的个数为( ) A.0 B.2 C.3 D.4 2.命题“,”的否定为 A., B., C., D., 3.已知命题:,,则为() A.,

2、 B., C., D., 4.已知函数,若则a的值为(   ) A. B. C.或 D.或 5.已知函数,若,则的值为 A. B. C.-1 D.1 6.如图,把边长为4的正方形ABCD沿对角线AC折起,当直线BD和平面ABC所成的角为时,三棱锥的体积为( ) A. B. C. D. 7.若,且,则角的终边位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.下列等式中,正确的是() A. B. C. D. 9.命题“,”否定是() A., B., C., D., 10. “角为第二象限角”是“”的( ) A.充要条件 B.

3、充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 二、填空题:本大题共6小题,每小题5分,共30分。 11.不等式的解集是_____________________ 12.的值等于____________ 13.已知函数,关于方程有四个不同的实数解,则的取值范围为__________ 14.函数单调递增区间为_____________ 15.圆的半径是,弧度数为3的圆心角所对扇形的面积等于___________ 16.已知函数的图象如图所示,则函数的解析式为__________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。

4、 17.已知函数的图像过点,且图象上与点最近的一个最低点是. (1)求的解析式; (2)求函数在区间上的取值范围. 18.已知非空集合,. (1)当时,求,; (2)若“”是“”的充分不必要条件,求的取值范围. 19.已知函数的图象与的图象关于轴对称,且的图象过点. (1)若成立,求的取值范围; (2)若对于任意,不等式恒成立,求实数的取值范围. 20.如果函数满足:对定义域内的所有,存在常数,,都有,那么称是“中心对称函数”,对称中心是点. (1)证明点是函数的对称中心; (2)已知函数(且,)的对称中心是点. ①求实数的值; ②若存在,使得在上的值域为,求实数的

5、取值范围. 21.设向量的夹角为且如果 (1)证明:三点共线. (2)试确定实数的值,使的取值满足向量与向量垂直. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】先求出集合,再求,最后数出中元素的个数即可. 【详解】因集合,, 所以, 所以, 则中元素的个数为2个. 故选:B 2、A 【解析】特称命题的否定是全称命题,并将结论否定,即可得答案. 【详解】命题“,”的否定为“,”. 故选:A. 【点睛】本题考查特称命题的否定的书写,是基础题. 3、C 【解析】根据特称命

6、题否定是全称命题即可得解. 【详解】把存在改为任意,把结论否定,为,. 故选:C 4、D 【解析】按照分段函数的分类标准,在各个区间上,构造求解,并根据区间对所求的解,进行恰当的取舍即可. 令,则或,解之得. 【点睛】本题主要考查分段函数,属于基础题型. 5、D 【解析】 ,选D 点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 6、C

7、 【解析】取的中点为,连接,过作的垂线,垂足为,可以证明平面、平面,求出的面积后利用公式求出三棱锥的体积. 【详解】 取的中点为,连接,过作的垂线,垂足为. 因为为等腰直角三角形,故,同理, 而,故平面, 而平面,故平面平面, 因为平面平面,平面, 故平面,故为直线BD和平面ABC所成的角, 所以. 在等腰直角形中,因为,,故, 同理,故为等边三角形,故. 故. 故选:C. 【点睛】思路点睛:线面角的构造,往往需要根据面面垂直来构建线面垂直,而后者来自线线垂直,注意对称的图形蕴含着垂直关系,另外三棱锥体积的计算,需选择合适的顶点和底面. 7、B 【解析】∵sin

8、α>0,则角α的终边位于一二象限或y轴的非负半轴, ∵由tanα<0, ∴角α的终边位于二四象限, ∴角α的终边位于第二象限 故选择B 8、D 【解析】按照指数对数的运算性质依次判断4个选项即可. 【详解】对于A,当为奇数时,,当为偶数时,,错误; 对于B,,错误; 对于C,,错误; 对于D,,正确. 故选:D. 9、B 【解析】根据命题的否定的定义判断. 【详解】命题“,”的否定是:, 故选:B 10、B 【解析】利用充分条件和必要条件的定义判断. 【详解】当角为第二象限角时,,所以,故充分; 当时,或,所以在第二象限或在第三象限,故不必要; 故选

9、B 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】利用指数函数的性质即可求解. 【详解】,即, 故答案为: . 12、2 【解析】利用诱导公式、降次公式进行化简求值. 【详解】. 故答案为: 13、 【解析】作出的图象如下: 结合图像可知,,故 令得:或,令得: ,且 等号取不到, 故,故填. 点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高. 14、 【解析】先求

10、出函数的定义域,再利用求复合函数单调区间的方法求解即得. 【详解】依题意,由得:或,即函数的定义域是, 函数在上单调递减,在上单调递增,而在上单调递增, 于是得在是单调递减,在上单调递增, 所以函数的单调递增区间为. 故答案为: 15、 【解析】根据扇形的面积公式,计算即可. 【详解】由扇形面积公式知,. 【点睛】本题主要考查了扇形的面积公式,属于容易题. 16、 【解析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得. 【详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.

11、 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2). 【解析】(1)根据,两点可求出和周期,再由周期公式即可求出,再由即可求出; (2)根据求出函数的值域,再利用换元法令即可求出函数的取值范围. 【详解】(1)根据题意可知,,,所以,解得, 所以,又,所以, 又,所以,所以 (2)因为,所以,所以, 所以,令,即,则 , 当时,取得最小值,当时,取得最大值7, 故的取值范围是. 【点睛】方法点睛:由图象确定系数,通常采用两种方法: ①如果图象明确指出了周期的大小和初始值 (第一个零点的横坐标)

12、或第二,第三(或第四,第五)点横坐标,可以直接解出和,或由方程(组)求出; ②代入点的坐标,通过解最简单的三角函数方程,再结合图象确定和. 18、(1), (2) 【解析】(1)先解出集合B,再根据集合的运算求得答案; (2)根据题意可知AÜ.B,由此列出相应的不等式组,解得答案. 【小问1详解】 ,, 故,; 【小问2详解】 由题意A是非空集合,“”是“”的充分不必要条件, 故得AÜ.B,得,或或, 解得,故的取值范围为. 19、(1);(2). 【解析】利用已知条件得到的值,进而得到的解析式,再利用函数的图象关于轴对称,可得的解析式;(1)先利用对数函数的单调性

13、列出不等式组求解即可;(2)对于任意恒成立等价于,令,,利用二次函数求解即可. 【详解】, ,, ; 由已知得, 即. (1)在上单调递减, , 解得, 的取值范围为. (2), 对于任意恒成立等价于, , , 令,, 则, , 当, 即, 即时, . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数, (1)若,,总有成立,故; (2)若,,有成立,故; (3)若,,有成立,故; (4)若,,有,则的值域是值域的子集 20、(1)见解析; (2)①,②. 【解析】(1)求得,根据函数的定义,即可

14、得到函数的图象关于点对称. (2)①根据函数函数的定义,利用,即可求得. ②由在上的值域,得到方程组,转化为为方程的两个根,结合二次函数的性质,即可求解. 【详解】(1)由题意,函数,可得, 所以函数的图象关于点对称. (2)①因为函数(且,)对称中心是点, 可得,即,解得(舍). ②因为,∴,可得, 又因为,∴. 所以在上单调递减, 由在上的值域为 所以,, 即,即, 即为方程的两个根,且, 令, 则满足,解得,所以实数的取值范围. 【点睛】本题主要考查了函数的新定义,函数的基本性质的应用,以及二次函数的图象与性质的综合应用,其中解答中正确理解函数的新定义,合理利用函数的性质,以及二次函数的图象与性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 21、(1)见解析(2) 【解析】(1)利用向量的加法求出 ,据此,结合 ,可以得到 与的关系;(2)根据题意可得 ,再结合 的夹角为 ,且 ,即可得到关于 的方程,求解即可. 试题解析:(1) 即共线, 有公共点 三点共线. (2) 且 解得

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服