ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:1.67MB ,
资源ID:12794611      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12794611.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(江苏省赣榆高级中学2025-2026学年高一上数学期末达标检测模拟试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省赣榆高级中学2025-2026学年高一上数学期末达标检测模拟试题含解析.doc

1、江苏省赣榆高级中学2025-2026学年高一上数学期末达标检测模拟试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为 A. B. C. D. 2.已知函

2、数的定义域与值域均为,则() A. B. C. D.1 3.已知函数在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是() A. B. C. D. 4.设定义在R上的函数满足,且,当时,,则 A. B. C. D. 5.已知六边形是边长为1的正六边形,则的值为 A. B. C. D. 6.函数在上最大值与最小值之和是( ) A. B. C. D. 7.将函数的图象向左平移个单位后得到函数的图象,则下列说法正确的是( ) A.图象的一条对称轴为 B.在上单调递增 C.在上的最大值为1 D.的一个零点为 8.对空间中两条不相交的直线和

3、必定存在平面,使得() A. B. C. D. 9.已知全集,,,则集合 A. B. C. D. 10.某几何体的三视图如图所示,则该几何体的表面积为() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.亲爱的考生,我们数学考试完整的时间是2小时,则从考试开始到结束,钟表的分针转过的弧度数为___________. 12.已知函数,那么_________. 13.已知函数的图象恒过定点,若点也在函数的图象上,则_________ 14.设,,则的取值范围是______. 15.已知,则______ 16.如果实数满足条件,那

4、么的最大值为__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4,筒车转轮的中心O到水面的距离为2,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M对应的点P从水中浮现(即P0时的位置)时开始计算时间,且以水轮的圆心O为坐标原点,过点O的水平直线为x轴建立平面直角坐标系.设盛水筒M从点P0运动到点P时所经过的时间为t(单位:),且此时点P距离水

5、面的高度为h(单位:)(在水面下则h为负数). (1)求点P距离水面的高度为h关于时间为t的函数解析式; (2)求点P第一次到达最高点需要的时间(单位:). 18.已知函数的定义域为. (1)求; (2)设集合,若,求实数的取值范围. 19.已知函数,,. (1)若,求函数的解析式; (2)试判断函数在区间上的单调性,并用函数单调性定义证明. 20.已知函数,其中 (1)若的最小值为1,求a的值; (2)若存在,使成立,求a取值范围; (3)已知,在(1)的条件下,若恒成立,求m的取值范围 21.已知函数(其中)的图象上相邻两个最高点的距离为 (Ⅰ)求函数的图象

6、的对称轴; (Ⅱ)若函数在内有两个零点,求的取值范围及的值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可. 详解:由题意得扇形的半径为: 又由扇形面积公式得该扇形的面积为:. 故选:A. 点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用. 2、A 【解析】根据函数的定义域可得,,,再根据函数的值域即可得出答案. 【详解】解:∵的解集为, ∴方程的解为或4, 则,,, ∴, 又因函

7、数的值域为, ∴,∴. 故选:A. 3、C 【解析】由在,上单调递减,得,由在上单调递减,得,作出函数且在上的大致图象,利用数形结合思想能求出的取值范围 【详解】解:由在上单调递减,得, 又由且在上单调递减, 得,解得,所以, 作出函数且在上的大致图象, 由图象可知,在上,有且仅有一个解, 故在上,同样有且仅有一个解, 当,即时,联立,即, 则,解得:, 当时,即,由图象可知,符合条件 综上: 故选:C 4、C 【解析】结合函数的周期性和奇偶性可得,代入解析式即可得解. 【详解】由,可得. ,所以. 由,可得. 故选C. 【点睛】本题主要考查了函

8、数的周期性和奇偶性,着重考查了学生的转化和运算能力,属于中档题. 5、D 【解析】如图,,选D. 6、A 【解析】直接利用的范围求得函数的最值,即可求解. 【详解】∵, ∴, ∴, ∴最大值与最小值之和为, 故选:. 7、B 【解析】 对选项A,,即可判断A错误;对选项B,求出的单调区间即可判断B正确;对选项C,求出在的最大值即可判断C错误;对选项D,根据,即可判断D错误. 详解】, . 对选项A,因为,故A错误; 对选项B,因为,. 解得,. 当时,函数的增区间为, 所以在上单调递增,故B正确; 对选项C,因为,所以, 所以,,,故错误; 对

9、选项D,,故D错误. 故选:B 8、C 【解析】讨论两种情况,利用排除法可得结果. 【详解】和是异面直线时,选项A、B不成立,排除A、B; 和平行时,选项D不成立,排除D, 故选C. 【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题. 9、D 【解析】因为A∪B={x|x≤0或x≥1},所以,故选D. 考点:集合的运算. 10、C 【解析】根据三视图,作出几何体的直观图,根据题中条件,逐一求解各个面的表面积,综合即可得答案. 【详解】根据三视图,作出几何体的直观图,如图所示: 由题意得矩形的面积,矩形的面积, 矩形的面积,

10、正方形、的面积, 五边形的面积, 所以该几何体的表面积为, 故选:C 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】根据角的概念的推广即可直接求出答案. 【详解】因为钟表的分针转了两圈,且是按顺时针方向旋转,所以钟表的分针转过的弧度数为. 故答案为:. 12、3 【解析】首先根据分段函数求的值,再求的值. 【详解】,所以. 故答案为:3 13、 【解析】根据对数过定点可求得,代入构造方程可求得结果. 【详解】,,,解得:. 故答案为:. 14、 【解析】由已知求得,然后应用诱导公式把求值式化为一个角的一个三角函数形式,结合正弦函数性

11、质求得范围 【详解】,,所以, 所以 , ,,, 故答案为: 15、 【解析】根据,利用诱导公式转化为可求得结果. 【详解】因为, 所以. 故答案为:. 【点睛】本题考查了利用诱导公式求值,解题关键是拆角:,属于基础题. 16、1 【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可 【详解】先根据约束条件画出可行域, 当直线过点时, z最大是1, 故答案为1 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题 三、解答题:本大题共5小题,共70分。解答时应

12、写出文字说明、证明过程或演算步骤。 17、(1),(t≥0) (2) 【解析】(1)根据题意,建立函数关系式; (2)直接解方程即可求解. 【小问1详解】 盛水筒M从点P0运动到点P时所经过的时间为t,则以Ox为始边,OP为终边的角为,故P点的纵坐标为, 则点离水面的高度,(t≥0). 【小问2详解】 令,得,得,, 得,,因为点P第一次到达最高点,所以,所以. 18、(1)A(2) 【解析】(1)由函数的解析式分别令真数为正数,被开方数非负确定集合A即可; (2)分类讨论和两种情况确定实数的取值范围即可. 【详解】(1)由,解得, 由,解得, ∴ . (2)

13、当时,函数在上单调递增. ∵, ∴,即. 于是. 要使,则满足,解得. ∴. 当时,函数在上单调递减. ∵, ∴,即. 于是 要使,则满足,解得与矛盾. ∴. 综上,实数的取值范围为. 【点睛】本题主要考查函数定义域的求解,集合之间的关系与运算等知识,意在考查学生的转化能力和计算求解能力. 19、(1) (2)见解析. 【解析】(1)由求a的值即可; (2)根据a的大小分类讨论即可. 【小问1详解】 ; 【小问2详解】 任取,且,则,, , ①时,,在单调递增; ②时, (i)时,单调递减; (ii)时,单调递增; 即时,f(x)在单调递减

14、在单调递增; ③时, ,在单调递减. 综上所述, 时,在单调递增; 时,f(x)在单调递减,在单调递增; 时,在单调递减. 20、(1)5(2) (3) 【解析】(1)采用换元法,令,并确定的取值范围,化简为关于二次函数后,根据其性质进行计算; (2)将存在,使成立,转化为存在,,求出的最大值列不等式即可; (3)根据第(1)问的信息,将转化为关于的不等式,采用分离参数法,使用基本不等式,求得的取值范围. 【小问1详解】 令,则,, 当时,,解得 【小问2详解】 存在,使成立,等价于存在,, 由(1)可知,, 当时,,解得 【小问3详解】 由(1)知,

15、则 又,则恒成立,等价于恒成立, 又,,则等价于 即,当且仅当时等号成立 21、(Ⅰ);(Ⅱ),. 【解析】(Ⅰ)由题意,图象上相邻两个最高点的距离为,即周期,可得,即可求解对称轴; (Ⅱ)函数在,内有两个零点,,转化为函数与函数有两个交点,即可求解的范围;在,内有两个零点,是关于对称轴是对称的,即可求解的值 【详解】(Ⅰ)∵已知函数(其中)的图象上相邻两个最高点的距离为, ∴, 故函数. 令, 得+, 故函数的图象的对称轴方程为+,; (Ⅱ)由(Ⅰ)可知函数. ∵x∈, ∴∈[,] ∴-≤≤, 要使函数在内有两个零点 ∴-<m<,且m 即m的取值范围是(-, )∪(,) 函数在内有两个零点, 可得是关于对称轴是对称的, 对称轴为=2x-, 得x=, 在内的对称轴x=或 当m∈(-,1)时,可得=, = 当m∈(-1,-)时,可得x1+x2=, ∴= =

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服