ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.23MB ,
资源ID:12793936      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12793936.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(河南省新乡市辉县市第一高级中学2025-2026学年高一上数学期末质量检测试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

河南省新乡市辉县市第一高级中学2025-2026学年高一上数学期末质量检测试题含解析.doc

1、河南省新乡市辉县市第一高级中学2025-2026学年高一上数学期末质量检测试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于() A. B. C. D. 2.四个函数:

2、①;②;③;④的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是() A.④①②③ B.①④②③ C.③④②① D.①④③② 3.已知奇函数在上是增函数,若,,,则的大小关系为 A. B. C. D. 4.圆与圆有()条公切线 A.0 B.2 C.3 D.4 5.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角

3、为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得( ) A. B. C. D. 6.如图,正方体中, ①与平行; ②与垂直; ③与垂直 以上三个命题中,正确命题的序号是( ) A.①② B.②③ C.③ D.①②③ 7.幂函数图象经过点,则的值为() A. B. C. D. 8.为了得到函数,的图象,只要把函数,图象上所有的点( ) A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向右平移个单位长度 9.已知函数,则() A.5 B.

4、 C. D. 10.已知函数,则( ) A.5 B.2 C.0 D.1 二、填空题:本大题共6小题,每小题5分,共30分。 11.关于函数与有下面三个结论: ①函数的图像可由函数的图像平移得到 ②函数与函数在上均单调递减 ③若直线与这两个函数的图像分别交于不同的A,B两点,则 其中全部正确结论的序号为____ 12.若函数满足,则______ 13.函数的最小正周期是__________ 14.给出下列命题“ ①设表示不超过的最大整数,则; ②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个; ③已知函数为奇函数,在区间上

5、有最大值5,那么在上有最小值.其中正确的命题序号是_________. 15.设,关于的方程有两实数根,,且,则实数的取值范围是___________. 16.角的终边经过点,则的值为______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数,,设(其中表示中的较小者). (1)在坐标系中画出函数的图像; (2)设函数的最大值为,试判断与1的大小关系,并说明理由. (参考数据:,,) 18.已知函数 (1)求的值域; (2)讨论函数零点的个数. 19.如图,平行四边形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正

6、方形ADEF,且面ADEF⊥面ABCD. (1)求证:BD⊥平面ECD; (2)求D点到面CEB的距离. 20.在①两个相邻对称中心的距离为,②两条相邻对称轴的距离为,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解 问题:函数的图象过点,且满足__________.当时,,求的值.注:如果选择多个条件分别解答,按第一个解答计分 21.已知函数 . (1)判断函数的奇偶性; (2)求证:函数在为单调增函数; (3)求满足的的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合

7、题目要求的 1、B 【解析】求圆心角的弧度数,再由弧长公式求弧长. 【详解】∵圆心角为, ∴ 圆心角的弧度数为,又扇形的半径为2, ∴ 该扇形的弧长, 故选:B. 2、B 【解析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到 【详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是; ②为奇函数,它的图象关于原点对称,它在上的值为正数, 在上的值为负数,故第三个图象满足; ③为奇函数,当时,,故第四个图象满足; ④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足, 故选:B 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (

8、1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置 (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 3、C 【解析】由题意:, 且:, 据此:, 结合函数的单调性有:, 即. 本题选择C选项. 【考点】 指数、对数、函数的单调性 【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式. 4、B 【解析】由

9、题意可知圆的圆心为,半径为,圆的圆心为半径为 ∵两圆的圆心距 ∴ ∴两圆相交,则共有2条公切线 故选B 5、C 【解析】先求出,再根据二倍角余弦公式求出,然后根据诱导公式求出. 【详解】由题意可得:,且, 所以, 所以, 故选:C 【点睛】本题考查了二倍角的余弦公式和诱导公式,属于基础题. 6、C 【解析】根据线面平行、线面垂直的判定与性质,即可得到正确答案 【详解】解:对于①,在正方体中,由图可知与异面,故①不正确 对于②,因为,不垂直,所以与不垂直,故②不正确 对于③,在正方体中,平面,又∵平面,∴与垂直.故③正确 故选:C 【点睛】此题考查线线平行、线

10、线垂直,考查学生的空间想象能力和对线面平行、线面垂直的判定与性质的理解与掌握,属基础题 7、D 【解析】设,由点幂函数上求出参数n,即可得函数解析式,进而求. 【详解】设,又在图象上,则,可得, 所以,则. 故选:D 8、C 【解析】利用辅助角公式可得,再由三角函数的平移变换原则即可求解. 【详解】解:, , 为了得到函数,的图象, 只要把函数,图象上所有的点向左平移个单位长度 故选:C. 9、A 【解析】分段函数求值,根据自变量的取值范围代相应的对应关系 【详解】因为 所以 故选:A 10、C 【解析】由分段函数,选择计算 【详解】由题意可得. 故选

11、C. 【点睛】本题考查分段函数的求值,属于简单题 二、填空题:本大题共6小题,每小题5分,共30分。 11、①②##②① 【解析】根据三角函数的平移法则和单调性知①②正确,取代入计算得到③错误,得到答案. 【详解】向左平移个单位得到,①正确; 函数在上单调递减,函数在上单调递减,②正确; 取,则,,,③错误. 故答案为:①② 12、 【解析】根据题意,令,结合指数幂的运算,即可求解. 【详解】由题意,函数满足,令,可得. 故答案为:. 13、 【解析】根据正弦函数的最小正周期公式即可求解 【详解】因为 由正弦函数的最小正周期公式可得 故答案为: 14、

12、①② 【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①② 点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和 (2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算 (3)注意把非奇非偶函数转化为奇函数或偶函数来讨论

13、 15、 【解析】结合一元二次方程根的分布的知识列不等式组,由此求得的取值范围. 【详解】令, 依题意关于的方程有两实数根,,且, 所以,即,解得. 故答案为: 16、 【解析】以三角函数定义分别求得的值即可解决. 【详解】由角的终边经过点,可知 则,, 所以 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)见解析;(2)见解析. 【解析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零

14、点,再由函数在上单调递减,即可得证. 试题解析:(1)作出函数的图像如下: (2)由题意可知,为函数与图像交点的横坐标,且, ∴. 设,易知即为函数零点, ∵,, ∴, 又∵函数在上单调递增,且为连续曲线, ∴有唯一零点 ∵函数在上单调递减, ∴,即. 18、(1); (2)答案见解析. 【解析】(1)分和,分别求出对应函数的值域,进而可求出结果; (2)作出函数的图象,数形结合即可分析出结果. 【小问1详解】 当时,,对称轴为,开口向上,则在上单调递减,在上单调递增,所以,即值域为; 当时,,则在上单调递减,且,所以,即值域为,故的值域为. 【小问2详

15、解】 由,得,则零点的个数可以看作直线与的图象的交点个数,当时,取得最小值,的图象如图所示. ①当时,直线与的图象有0个交点,即零点的个数为0; ②当或时,直线与的图象有1个交点,即零点的个数为1; ③当或时,直线与的图象有2个交点,即零点的个数为2; ④当时,直线与的图象有3个交点,即零点的个数为3. 综上:①当时,零点的个数为0;②当或时,零点的个数为1;③当或时,零点的个数为2;④当时,零点的个数为3. 19、(1)见解析;(2)点到平面的距离为 【解析】(1)根据题意选择,只需证明,根据线面垂直的判定定理,即可证明平面;(2)把点到面的距离,转化为三棱锥的高,利用等

16、体积法,即可求解高 试题解析:(1)证明:∵四边形为正方形∴ 又∵平面平面, 平面平面=, ∴平面 ∴ 又∵,∴平面 (2)解:,,, 又∵ 矩形中,DE=1 ∴,, ∴过B做CE的垂线交CE与M,CM= ∴ 的面积等于 由得(1)平面∴点到平面的距离 ∴ ∴ ∴ 即点到平面的距离为. 考点:直线与平面垂直的判定与证明;三棱锥的体积的应用. 20、选①②③,答案相同,均为 【解析】选①②可以得到最小正周期,从而得到,结合图象过的点,可求出,从而得到,进而得到,接下来用凑角法求出的值;选③,可以直接得到最小正周期,接下来过程与选①②相同. 【详解】选①②:

17、由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以, ; 选③:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以, ; 21、(1)为奇函数;(2)证明见解析;(3). 【解析】(Ⅰ)求出定义域为{x|x≠0且x∈R},关于原点对称,再计算f(-x),与f(x)比较即可得到奇偶性; (Ⅱ)运用单调性的定义,注意作差、变形、定符号、下结论等步骤; (Ⅲ)讨论x>0,x<0,求出f(x)的零点,再由单调性即可解得所求取值范围 试题解析: (1)定义域为{x|x≠0且x∈R},关于原点对称, ,所以为奇函数; (2)任取, 所以在为单调增函数; (3)解得,所以零点为, 当时,由(2)可得的的取值范围为,的的取值范围为,又该函数为奇函数,所以当时,由(2)可得的的取值范围为, 综上:所以 >解集为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服