ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:496.50KB ,
资源ID:12793877      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12793877.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(福建省泉港一中2026届数学高一第一学期期末检测试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

福建省泉港一中2026届数学高一第一学期期末检测试题含解析.doc

1、福建省泉港一中2026届数学高一第一学期期末检测试题 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为() A.1 B.2 C.4 D.6 2.已知,

2、则( ) A. B. C. D. 3.定义在R上的偶函数满足:对任意的,有,且,则不等式的解集是() A. B. C. D. 4.“”的一个充分不必要条件是( ) A. B. C. D. 5.下列函数中,以为最小正周期的偶函数是() A.y=sin2x+cos2x B.y=sin2xcos2x C.y=cos(4x+) D.y=sin22x﹣cos22x 6.函数的图像与函数的图像所有交点的横坐标之和等于 A2 B.4 C.6 D.8 7.在空间坐标系中,点关于轴的对称点为() A. B. C. D. 8.等边三角形ABC的边长为1,则()

3、 A. B. C. D. 9.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)( ) A.4 B.5 C.6 D.7 10.已知集合,集合,则A∩B=() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知是定义在上的偶函数,且当时,,则当时,___________. 12.已知,,则____________ 13.下列命题中,正确命题的序号为______ ①单位向量都相等;②若向量,满足,则; ③向量就是有向线段;④模为的向量叫零向量; ⑤向量,共

4、线与向量意义是相同的 14.已知的图象的对称轴为_________________ 15.已知平面向量,,,,,则的值是______ 16.已知,则_______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数. (1)若不等式的解集为,求不等式的解集; (2)若,求不等式的解集. 18.设函数的定义域为,函数的定义域为. (1)求; (2)若,且函数在上递减,求的取值范围. 19.(1)已知,则; (2)已知角的终边上有一点的坐标是,其中,求 20.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值

5、2,求a的值 21.2022年是苏颂诞辰1001周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,退水壶内水面位于枢轮中心下方1.19米处,当点P从枢轮最高处随枢轮开始转动时,打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动.以枢轮中心为原点,水平线为x轴建立平面直角坐标系,令P点纵坐标为,水面纵坐标为,P点转动经过的时间为x分钟.(参考数据:,,) (1)求,关于x的函数关系式; (2)求P点进入水中所用时间的最小值(单位:分钟,结果取整数) 参考答案 一

6、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果. 【详解】令,则函数有最小值 ∵, ∴当函数是增函数时,在上有最小值, ∴当函数是减函数时,在上无最小值, ∴.此时“囧函数”与函数在同一坐标系内的图象如图所示, 由图象可知,它们的图象的交点个数为4. 【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题. 2、D 【解析】由同角三角函数的平方关系计算即可得出结果

7、 【详解】因为, ,,, 所以. 故选:D 3、C 【解析】依题意可得在上单调递减,根据偶函数的性质可得在上单调递增,再根据,即可得到的大致图像,结合图像分类讨论,即可求出不等式的解集; 【详解】解:因为函数满足对任意的,有, 即在上单调递减,又是定义在R上的偶函数,所以在上单调递增, 又,所以,函数的大致图像可如下所示: 所以当时,当或时, 则不等式等价于或, 解得或,即原不等式的解集为; 故选:C 4、D 【解析】利用充分条件,必要条件的定义判断即得. 【详解】由,可得, 所以是的充要条件; 所以是既不充分也不必要条件; 所以是的必要不充分条件;

8、 所以是的充分不必要条件. 故选:D. 5、D 【解析】A中,周期为,不是偶函数; B中,周期为,函数为奇函数; C中,周期为,函数为奇函数; D中,周期为,函数为偶函数 6、D 【解析】由于函数与函数 均关于点成中心对称,结合图形以点 为中心两函数共有个交点,则有 ,同理有,所以所有交点横坐标之和为 .故正确答案为D. 考点:1.函数的对称性;2.数形结合法的应用. 7、C 【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果. 【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数, 所以点关于轴的

9、对称点的坐标是. 故选:C. 8、A 【解析】直接利用向量的数量积定义进行运算,即可得到答案; 详解】, 故选:A 9、D 【解析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意 【详解】设至少需要经过这样的块玻璃板,则,即, 所以,即, 因为, 所以, 故选:D 【点睛】本题考查利用对数的运算性质求解,考查指数函数的实际应用 10、B 【解析】化简集合B,再求集合A,B的交集即可. 【详解】∵集合,集合, ∴. 故选:B. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】设,则,求

10、出的表达式,再由即可求解. 【详解】设,则,所以, 因为是定义在上的偶函数,所以, 所以当时, 故答案为:. 12、 【解析】,, 考点:三角恒等变换 13、④⑤ 【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案 . 【详解】对于①.单位向量方向不同时,不相等,故不正确. 对于②.向量,满足时,若方向不同时,不相等,故不正确. 对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量. 向量可以用有向线段来表示,二者不等同,故不正确, 对于④.根据零向量的定义,正确. 对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故

11、正确. 故答案为:④⑤ 14、 【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求. 【详解】因为所以,故对称轴为. 故答案为: 15、 【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解. 【详解】由得, 所以, 所以 所以. 故答案为: 16、 【解析】直接利用二倍角的余弦公式求得cos2a的值 【详解】∵. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)或 (2)答案见解析 【解析】(1)由已知得,4是方程的两根,根据一元二次方程的根与系数的

12、关系求得m,n,代入不等式,求解可得答案; (2)代入已知条件得,分,,,,,分别求解不等式可得答案. 【小问1详解】 解:依题意,的解集为,故,4是方程的两根, 则,解得, 故或, 故不等式的解集为或. 【小问2详解】 解:依题意,, 若,(*)式化为,解得; 若,则; 当时,的解为或; 当时,(*)式化为,该不等式无解; 当时,的解为; 当时,的解为; 综上所述,若,不等式的解集为; 若,不等式的解集为或; 若,不等式无解; 若,不等式的解集为; 若,不等式的解集为. 18、(1);(2). 【解析】(1)先求出集合,,然后由补集和并集的定义求解即

13、可; (2)先利用交集求出集合,然后利用二次函数的单调性分析求解即可 【详解】解:(1)由得,∴, 由得,∴, ∴,∴. (2)∵,,∴. 由在上递减,得,即,∴. 19、(1);(2)当时,;当时, 【解析】(1)分子分母同时除以,然后代入计算即可; (2)利用三角函数的定义求出和,再分和讨论计算即可. 【详解】(1)分子分母同时除以得原式=. (2)由三角函数的定义可知 ,, 当时,,,所以; 当时,,,所以 所以当时,原式;当时,原式 20、a=-1或a=2 【解析】函数的对称轴是,根据与区间的关系分类讨论得最大值,由最大值求得 【详解】函数f(x)

14、=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a (1)当a<0时,f(x)max=f(0)=1-a,∴1-a=2,∴a=-1 (2)当0≤a≤1时,f(x)max=f(a)=a2-a+1,∴a2-a+1=2,即a2-a-1=0,∴a= (舍去) (3)当a>1时,f(x)max=f(1)=a,∴a=2 综上可知,a=-1或a=2 【点睛】关键点点睛:本题考查二次函数最值问题.二次函数在区间最值问题,一般需要分类讨论,分类标准是对称轴与区间的关系,如果,求最小值时分三类:,,,求最大值只要分两类:和,类似分类 21、(1),(2)13分钟 【解析】(1)按照题目所给定的坐标系分别写出和的方程即可; (2)根据零点存在定理判断即可. 【小问1详解】 可设, ∵转动的周期为30分钟,∴, ∵枢轮的直径为3.4米,∴, ∵点P的初始位置为最高点,∴, ∴, ∵退水壶内水面位于枢轮中心下方1.19米处,∴水面的初始纵坐标为, ∵水位以每分钟0.017米速度下降, ∴; 【小问2详解】 P点进入水中,则,即 ∴ 作出和的大致图像,显然在内存在一个交点 令, ∵, , ∴P点进入水中所用时间的最小值为13分钟; 综上,,,P点进入水中所用时间的最小值为13分钟.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服