ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:572KB ,
资源ID:12791351      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12791351.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(广西南宁市兴宁区南宁三中2026届高一数学第一学期期末考试试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

广西南宁市兴宁区南宁三中2026届高一数学第一学期期末考试试题含解析.doc

1、广西南宁市兴宁区南宁三中2026届高一数学第一学期期末考试试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.一个几何体的三视图如图所示(单位:),则该几何体的体积为(  ) A B. C. D. 2.已知命题p:“”,则为() A. B. C. D. 3.已知在△AB

2、C中,cos=-,那么sin+cosA=(  ) A. B.- C. D. 4.函数的最小正周期是( ) A.π B.2π C.3π D.4π 5.圆O1:x2+y2﹣6x+4y+12=0与圆O2:x2+y2﹣14x﹣2y+14=0的位置关系是(  ) A.相离 B.内含 C.外切 D.内切 6.函数lgx=3,则x=( ) A 1000 B.100 C.310 D.30 7.若,,则的值为() A. B. C. D. 8.函数是指数函数,则的值是 A.4 B.1或3 C.3 D.1 9.要得到函数的图象,只需把函数的图象上所有的点() A.向

3、左平行移动个单位长度 B.向右平行移动个单位长度 C.向左平行移动个单位长度 D.向右平行移动个单位长度 10.已知函数f(x)(x∈R)满足f(2-x)=-f(x),若函数y=与f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),则x1+x2+x3+…+xm的值为(  ) A.4m B.2m C.m D.0 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数是定义在R上的奇函数,当时,2,则在R上的解析式为________. 12.函数的部分图象如图所示.若,且,则_____________ 13.已知函数若,则的值为_____

4、 14.计算:_______ 15.已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述: ①是周期函数; ②是它的一条对称轴; ③是它图象的一个对称中心; ④当时,它一定取最大值; 其中描述正确的是__________ 16.设函数=,则= 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数. (1)求的最小正周期和最大值; (2)讨论在上的单调性. 18.已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.求: (1)求圆的方程; (2)设直线与圆相交

5、于两点,求实数的取值范围; 19.有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积. 20.已知二次函数满足:,且该函数的最小值为1. (1)求此二次函数的解析式; (2)若函数的定义域为(其中),问是否存在这样的两个实数m,n,使得函数的值域也为A?若存在,求出m,n的值;若不存在,请说明理由. 21.如图,某地一天从5~13时的温度变化近似满足 (1)求这一天5~13时的最大温差; (2)写出这段曲线的函数解析式 参考答案 一、选择题:本大题

6、共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】由三视图知,该几何体由两个相同的圆锥和一个圆柱组合而成,圆锥的底面圆半径为1,高为1,圆柱的母线长为2,底面圆半径为1,所以几何体的体积为,选B. 2、C 【解析】根据命题的否定的定义判断 【详解】特称命题的否定是全称命题 命题p:“”,的否定为: 故选:C 3、B 【解析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B. 4、A 【解析】化简得出,即可求出最小正周期. 【详解】, 最小

7、正周期. 故选:A. 5、D 【解析】先求出两圆的圆心距,再比较圆心距和两个半径的关系得解. 【详解】由题得圆O1:它表示圆心为O1(3,-2)半径为1的圆; 圆O2:,它表示圆心为O2(7,1),半径为6的圆. 两圆圆心距为, 所以两圆内切. 故选:D 【点睛】本题主要考查两圆位置关系的判定,意在考查学生对这些知识的理解掌握水平. 6、A 【解析】由lgx=3,可得直接计算出结果. 【详解】由lgx=3,有: 则, 故选:A 【点睛】本题考查对数的定义,属于基础题. 7、D 【解析】根据诱导公式即可直接求值. 【详解】因为,所以, 又因为,所以, 所以

8、 故选:D. 8、C 【解析】由题意,解得.故选C 考点:指数函数的概念 9、C 【解析】根据三角函数图象的平移变换求解即可. 【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可. 故选:C 10、C 【解析】由条件可得,即有关于点对称,又的图象关于点对称,即有,为交点,即有,也为交点,计算即可得到所求和 【详解】解:函数满足, 即为, 可得关于点对称, 函数的图象关于点对称, 即有,为交点,即有,也为交点, ,为交点,即有,也为交点, 则有. 故选. 【点睛】本题考查抽象函数的求和及对称性的运用,属于中档题. 二、

9、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由是定义域在上的奇函数,根据奇函数的性质,可推得的解析式. 【详解】当时,2,即, 设,则, , 又为奇函数, , 所以在R上的解析式为 . 故答案为:. 12、## 【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出. 【详解】由图象可知, ,即, 则, 此时,, 由于, 所以,即. ,且, 由图象可知,, 则. 故答案为:. 13、4 【解析】根据自变量所属的区间,代入相应段的解析式求值即可. 【详解】由题意可知,,解得, 故答案为:4 14、

10、解析】求出的值,求解计算即可. 【详解】 故答案为: 15、①③ 【解析】先对已知是定义在的奇函数,且为偶函数用定义转化为恒等式,再由两个恒等式进行合理变形得出与四个命题有关的结论,通过推理证得①③正确. 【详解】因为为偶函数,所以, 即是它的一条对称轴; 又因为是定义在上的奇函数, 所以,即, 则,, 即是周期函数,即①正确; 因为是它的一条对称轴且, 所以()是它的对称轴,即②错误; 因为函数是奇函数且是以为周期周期函数, 所以,所以是它图象的一个对称中心, 即③正确; 因为是它的一条对称轴,所以当时,函数取得最大值或最小值, 即④不正确. 故答案为:

11、①③. 16、 【解析】由题意得, ∴ 答案: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)最小正周期,最大值为;(2)在单调递增,在单调递减. 【解析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得的最小正周期和最大值; (2)根据,利用正弦函数的单调性,分类讨论求得的单调性. 【详解】(1) , 则的最小正周期为, 当,即时,取得最大值为; (2)当时,, 则当,即时,为增函数; 当时,即时,为减函数, 在单调递增,在单调递减. 【点睛】本题考查正弦函数的性质,解题的关键

12、是利用三角恒等变换化简函数. 18、(Ⅰ);(Ⅱ). 【解析】(1)求圆的方程有两种方法:①几何法,通过研究圆的性质进而求出圆的基本量.②代数法,即设出圆的方程,用待定系数法求解,利用待定系数法的关键是建立关于a,b,r或D,E,F的方程组.本题利用几何性质;(2)利用圆心到直线的距离可判断直线与圆的位置关系;也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系 试题解析:(1)设圆心为,因圆C与直线相切,故,又,所以 所求圆的方程为 (2)因直线与圆M相交于两点,所以圆心到直线的距离小于半径 故,解得 考点:圆的方程及直线与圆的位置关系 19、

13、当面积相等的小矩形的长为时,矩形面积最大, 【解析】设每个小矩形的长为,宽为,依题意可知,代入矩形的面积公式,根据基本不等式即可求得矩形面积的最大值. 【详解】设每个小矩形的长为,宽为,依题意可知, , 当且仅当取等号, 所以时,. 【点睛】本题主要考查函数最值的应用,考查了学生分析问题和解决问题的能力. 20、(1);(2)存在,,. 【解析】(1)设,由,求出值,可得二次函数的解析式; (2)分①当时,②当时,③当时,三种情况讨论,可得存在满足条件的,,其中, 【详解】解:(1)依题意,可设, 因,代入得, 所以. (2)假设存在这样m,n,分类讨论如下:

14、 当时,依题意,即两式相减,整理得 ,代入进一步得,产生矛盾,故舍去; 当时,依题意, 若,,解得或(舍去); 若,,产生矛盾,故舍去; 当时,依题意,即 解得,产生矛盾,故舍去 综上:存在满足条件的m,n,其中, 21、(1)6摄氏度 (2), 【解析】(1)根据图形即可得出答案; (2)根据可得函数的最值,从而求得,图像为函数的半个周期,可求得,再利用待定系数法可求得,即可得解. 【小问1详解】 解:由图知,这段时间的最大温差是摄氏度; 【小问2详解】 解:由图可以看出,从5~13时的图象是函数的半个周期的图象, 所以,, 因为,则, 将,,,,代入, 得, 所以,可取, 所以解析式为,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服