ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1,020.50KB ,
资源ID:12791082      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12791082.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(云南省玉溪市民族中学2025年高一上数学期末综合测试模拟试题含解析.doc)为本站上传会员【cg****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

云南省玉溪市民族中学2025年高一上数学期末综合测试模拟试题含解析.doc

1、云南省玉溪市民族中学2025年高一上数学期末综合测试模拟试题 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:

2、本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如图,把边长为4的正方形ABCD沿对角线AC折起,当直线BD和平面ABC所成的角为时,三棱锥的体积为( ) A. B. C. D. 2.下列函数中,既是奇函数,又是增函数的是() ①;②;③;④ A.①② B.①④ C.②③ D.③④ 3.方程的实数根大约所在的区间是   A. B. C. D. 4.已知全集,集合,,则∁U(A∪B ) = A. B. C. D. 5.要得到函数f(x)=cos(2x-)的图象,只需将函数g(x)=cos2x的图象(  )

3、A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移单位长度 D.向右平移个单位长度 6.已知集合,集合,则等于( ) A. B. C. D. 7.如图,已知水平放置的按斜二测画法得到的直观图为,若,,则的面积为() A.12 B. C.6 D.3 8.已知点是角的终边上一点,则() A. B. C. D. 9.将函数的图象向左平移个单位长度,所得图象的函数解析式为 A. B. C. D. 10.一个袋中有个红球和个白球,现从袋中任取出球,然后放回袋中再取出一球,则取出的两个球同色的概率是 A. B. C. D. 二、填空题:本大题共6小题,

4、每小题5分,共30分。 11.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________ 12.已知,且,则=_______________. 13.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________. 14.已知函数,则__

5、 15.已知函数,实数,满足,且,若在上的最大值为2,则____ 16.如图,扇形的面积是,它的周长是,则弦的长为___________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数(为常数)是奇函数. (1)求的值与函数的定义域. (2)若当时,恒成立.求实数的取值范围. 18.已知定义域为的函数是奇函数. (1)求实数a的值; (2)若不等式在有解,求实数m取值范围. 19.在非空集合①,②,③这三个条件中任选一个,补充在下面问题中,已知集合______, 使“”是“”的充分不必要条件,若问题

6、中a存在,求a的值;若a不存在,请说明理由.(如果选择多个条件分别解答,按第一个解答计分) 20.闽东传承着中国博大精深的茶文化,讲究茶叶茶水的口感,茶水的口感与茶叶类型和水的温度有关.如果刚泡好的茶水温度是,空气的温度是,那么分钟后茶水的温度(单位:)可由公式求得,其中是一个物体与空气的接触状况而定的正常数.现有某种刚泡好的红茶水温度是,放在的空气中自然冷却,10分钟以后茶水的温度是 (1)求k的值; (2)经验表明,温度为 的该红茶水放在的空气中自然冷却至时饮用,可以产生最佳口感,那么,大约需要多长时间才能达到最佳饮用口感? (结果精确到,附:参考值) 21.已知函数(且)的图象

7、过点 (1)求的值. (2)若. (i)求的定义域并判断其奇偶性; (ii)求的单调递增区间. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】取的中点为,连接,过作的垂线,垂足为,可以证明平面、平面,求出的面积后利用公式求出三棱锥的体积. 【详解】 取的中点为,连接,过作的垂线,垂足为. 因为为等腰直角三角形,故,同理, 而,故平面, 而平面,故平面平面, 因为平面平面,平面, 故平面,故为直线BD和平面ABC所成的角, 所以. 在等腰直角形中,因为,,故, 同理,故为

8、等边三角形,故. 故. 故选:C. 【点睛】思路点睛:线面角的构造,往往需要根据面面垂直来构建线面垂直,而后者来自线线垂直,注意对称的图形蕴含着垂直关系,另外三棱锥体积的计算,需选择合适的顶点和底面. 2、D 【解析】对每个函【解析】判断奇偶性及单调性即可. 【详解】对于①,,奇函数,在和上分别单增,不满足条件; 对于②,,偶函数,不满足条件; 对于③,,奇函数,在R上单增,符合题意; 对于④,,奇函数,在R上单增,符合题意; 故选:D 3、C 【解析】方程的根转化为函数的零点,判断函数的连续性以及单调性,然后利用零点存在性定理推出结果即可 【详解】方程的根就是的零点

9、 函数是连续函数,是增函数, 又,, 所以, 方程根属于 故选C 【点睛】本题考查函数零点存在性定理的应用,考查计算能力 4、C 【解析】, , ,∁U(A∪B )= 故答案为C. 5、D 【解析】利用函数的图象变换规律即可得解. 【详解】解:, 只需将函数图象向右平移个单位长度即可 故选. 【点睛】本题主要考查函数图象变换规律,属于基础题 6、A 【解析】根据题意先解出集合B,进而求出交集即可. 详解】由题意,,则. 故选:A. 7、C 【解析】由直观图,确定原图形中线段长度和边关系后可求得面积 【详解】由直观图,知,,, 所以三角形面积为

10、 故选:C 8、A 【解析】利用三角函数的定义可求得结果. 【详解】由三角函数的定义可得. 故选:A. 9、A 【解析】依题意将函数的图象向左平移个单位长度得到: 故选 10、D 【解析】从袋中任取出球,然后放回袋中再取出一球,共有种方法, 其中取出的两个球同色的取法有种,因此概率为 选D. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解. 【详解】由题意知,,, , 当时,, ,即, , 所以, 故答案为: 12、 【解析】由同角三角函数关系求出,最后利用求解即

11、可. 【详解】由,且得 则, 则. 故答案为:. 13、2 【解析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值; 【详解】设扇形的弧长为,半径为,则, , 当时,扇形面积最大时, 此时, 故答案为: 14、2 【解析】先求出,然后再求的值. 【详解】由题意可得, 所以, 故答案为: 15、4 【解析】由题意结合函数的解析式分别求得a,b的值,然后求解的值即可. 【详解】绘制函数的图像如图所示, 由题意结合函数图像可知可知,则, 据此可知函数在区间上的最大值为, 解得,且,解得:, 故. 【点睛】本题主要考查函数图像的应用,

12、对数的运算法则等知识,意在考查学生的转化能力和计算求解能力. 16、 【解析】由扇形弧长、面积公式列方程可得,再由平面几何的知识即可得解. 【详解】设扇形的圆心角为,半径为, 则由题意,解得, 则由垂径定理可得. 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1),定义域为或;(2). 【解析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域; (2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果. 【详解】(1)因为函数是奇函数, 所以,所以, 即, 所以,令,解得或, 所以函

13、数的定义域为或; (2), 当时,所以,所以. 因为,恒成立, 所以,所以的取值范围是. 【点睛】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型. 18、(1);(2). 【解析】(1)函数是上的奇函数,利用,注意检验求出的是否满足题意;(2)由(1)得,把不等式在有解转化为在有解,构造函数,利用基本不等式求解即可. 【详解】(1)由为上的奇函数, 所以, 则,检验如下: 当,, , 则函数为上的奇函数. 所以实数a的值. (2)由(1)知, 则, 由得:, 因为, 等价于在有解, 则, 令, 设 , 当且

14、仅当或(舍)取等号; 则, 所以实数m取值范围. 【点睛】关键点睛:把不等式在有解转化为在有解,构造函数出是解决本题的关键. 19、答案见解析 【解析】由题设可得A不为空集,,根据所选的条件,结合充分不必要关系判断A、B的包含关系,进而列不等式组求参数范围. 【详解】由题意知,A不为空集, i.如果选①,因为“”是“”的充分不必要条件, 所以A是B的真子集,则,解得, 所以实数a的取值范围是; ii.如果选②,因为“”是“”的充分不必要条件, 所以A是B的真子集,则,此时, 所以不存在a使“”是“”的充分不必要条件; iii.如果选③,因为“”是“”的充分不必要条件

15、 所以A是B的真子集,则,解得,此时无解 不存在a使“”是“”的充分不必要条件 20、(1) (2) 【解析】(1)由解方程可得解; (2)令,解方程可得解. 【小问1详解】 由题意可知, ,其中, 所以, 解得 小问2详解】 设刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感, 由题意可知,, 令,所以, ,, 所以, 所以刚泡好的茶水大约需要放置分钟才能达到最佳饮用口感. 21、(1);(2)(i)定义域为,是偶函数;(ii). 【解析】(1)由可求得实数的值; (2)(i)根据对数的真数大于零可得出关于实数的不等式,由此可解得函数的定义域,然后利用函数奇偶性的定义可证明函数为偶函数; (ii)利用复合函数法可求得函数的增区间. 【详解】(1)由条件知,即,又且,所以; (2). (i)由得,故的定义域为. 因为,故是偶函数; (ii), 因为函数单调递增,函数在上单调递增, 故的单调递增区间为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服