ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:836.50KB ,
资源ID:12790963      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790963.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(广东省东莞中学松山湖学校2025年数学高一第一学期期末学业质量监测试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

广东省东莞中学松山湖学校2025年数学高一第一学期期末学业质量监测试题含解析.doc

1、广东省东莞中学松山湖学校2025年数学高一第一学期期末学业质量监测试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.将函数的图象先向右平移个单位长度,再向下平移1个单位长度,所得图象对应的函数解析式是() A. B. C. D. 2.设四边形为平行四边形,,若点满足,,则 A

2、 B. C. D. 3.下列四个函数中,在整个定义域内单调递减是   A. B. C. D. 4.已知定义域为的奇函数满足,若方程有唯一的实数解,则() A.2 B.4 C.8 D.16 5.已知,且,则的最小值为() A.3 B.4 C.5 D.6 6.下列函数中,周期为的是( ) A. B. C. D. 7.已知函数,,的零点依次为,则以下排列正确的是( ) A. B. C. D. 8.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为() A. B. C. D. 9.设,则 A.f(x)与g(x)都是奇函数 B

3、f(x)是奇函数,g(x)是偶函数 C.f(x)与g(x)都是偶函数 D.f(x)是偶函数,g(x)是奇函数 10.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则   A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知则_______. 12.若幂函数的图象过点,则___________. 13.已知函数,,若对任意,存在,使得,则实数的取值范围是__________ 14.函数的单调递增区间为___________. 15.设函数.则函数的值域为___________;若方程在区间上的四个根分别为,

4、则___________. 16.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知集合,,若“”是“”的充分不必要条件,求实数a的取值范围. 18.某港口水深y(米)是时间t (0≤t≤24,单位:小时)的函数,下面是水深数据: t(小时) 0 3 6 9 12 15 18 21 24 y(米) 10.0 13.0 9.9 7.0

5、 100 13.0 10.1 7.0 10.0 据上述数据描成的曲线如图所示,该曲线可近似的看成函数的图象 (1)试根据数据表和曲线,求的解析式; (2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港? 19.已知 (1)当时,求的值; (2)若的最小值为,求实数的值; (3)是否存在这样的实数,使不等式对所有都成立.若存在,求出的取值范围;若不存在,请说明理由 20.(1)已知若,求x的取值范围.(结果用区间表示) (2)已知,求的值 21.已知函数且. (1)若,

6、求的值; (2)若在上的最大值为,求的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】利用三角函数的伸缩平移变换规律求解变换后的解析式,再根据二倍角公式化简. 【详解】将函数的图象先向右平移个单位长度,得函数解析式为,再将函数向下平移1个单位长度,得函数解析式为. 故选:A 2、D 【解析】令,则,, 故 选D 3、C 【解析】根据指数函数的性质判断,利用特殊值判断,利用对数函数的性质判断,利用偶函数的性质判断 【详解】对于,,是指数函数,在整个定义域内单调递增,不符合题意

7、 对于,,有,,不是减函数,不符合题意; 对于,为对数函数,整个定义域内单调递减,符合题意; 对于,,为偶函数,整个定义域内不是单调函数,不符合题意, 故选C 【点睛】本题主要考查指数函数的性质、单调性是定义,对数函数的性质以及偶函数的性质,意在考查综合利用所学知识解答问题的能力,属于中档题 4、B 【解析】由条件可得,为周期函数,且一个周期为6,设,则得到偶函数,由有唯一的实数解,得有唯一的零点,则,从而得到答案. 【详解】由得,即, 从而,所以为周期函数,且一个周期为6, 所以. 设,将的图象向右平移1个单位长度, 可得到函数的图象, 且为偶函数.由有唯一的实数

8、解,得有唯一的零点, 从而偶函数有唯一的零点,且零点为,即,即, 解得,所以 故选:. 【点睛】关键点睛:本题考查函数的奇偶性和周期性的应用,解答本题的关键是由条件得到,得到为周期函数,设的图象,且为偶函数.由有唯一的实数解,得有唯一的零点,从而偶函数有唯一的零点,且零点为,属于中档题. 5、C 【解析】依题意可得,则,再利用基本不等式计算可得; 【详解】解:因为且,所以,所以 当且仅当,即,时取等号; 所以的最小值为 故选:C 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数; (2)“二定”就是要求和

9、的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值; (3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方 6、C 【解析】对于A、B:直接求出周期; 对于C:先用二倍角公式化简,再求其周期; 对于D:不是周期函数,即可判断. 【详解】对于A:的周期为,故A错误; 对于B:的周期为,故B错误; 对于C:,所以其周期为,故C正确; 对于D:不是周期函数,没有最小正周期,故D错误. 故选:C 7、B 【解析】在同一直角坐标系中画出,,与的图像,数形结合

10、即可得解 【详解】函数,,的零点依次为, 在同一直角坐标系中画出,,与的图像如图所示,由图可知,,,满足 故选:B. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解 8、C 【解析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点

11、为,由此可知,可得,据此即可求出结果. 【详解】令和相等可得,即; 此时,即等腰直角三角形的斜边上的高为,所以底边长为, 令底边的一个端点为,则另一个端点为, 所以,即, 当时,的最小值,最小值为 故选:C 9、B 【解析】定义域为,定义域为R,均关于原点对称 因为,所以f(x)是奇函数, 因为,所以g(x)是偶函数,选B. 10、A 【解析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解 【详解】解:将的图象所有点的横坐标缩短到原来的倍得到, 再把所得图象向左平移个单位,得到, 故选

12、A 【点睛】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】因为, 所以 12、27 【解析】代入已知点坐标求出幂函数解析式即可求, 【详解】设代入,即,所以,所以. 故答案为:27. 13、 【解析】若任意,存在,使得成立, 只需, ∵,在该区间单调递增,即, 又∵,在该区间单调递减,即, 则,, 14、 【解析】根据复合函数“同增异减”的原则即可求得答案. 【详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:. 故答案为:. 15、 ①.

13、 ②. 【解析】根据二倍角公式,化简可得,分别讨论位于第一、二、三、四象限,结合辅助角公式,可得的解析式,根据的范围,即可得值域;作出图象与,结合图象的对称性,可得答案. 【详解】由题意得 当时,即时, , 又, 所以; 当时,即时, , 又, 所以; 当时,即时, , 又, 所以; 当时,即时, , 又, 所以; 综上:函数的值域为. 因为,所以, 所以, 作出图象与图象,如下如所示 由图象可得, 所以 故答案为:; 16、 ①.448 ②.600 【解析】 销售价格与销售量相乘即得收入,对分段函数,可分段求出最

14、大值,然后比较. 【详解】由题意可得(元), 即第14天该商品的销售收入为448元. 销售收入,, 即,. 当时,, 故当时,y取最大值,, 当时,易知, 故当时,该商品日销售收入最大,最大值为600元. 故答案为:448;600. 【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、 【解析】根据给定条件可得AÜB,再借助集合的包含关系列式计算作答. 【详解】因“”是“”的充分不必要条件,于是得AÜB,而集合,, 因此,或,解得或,即有, 所

15、以实数a的取值范围为. 18、(1);(2)至或至. 【解析】(1)根据数据,可得,由,可求,从而可求函数的表达式; (2)由题意,水深,即,从而可求t的范围,即可得解; 【详解】解:(1)根据数据,可得, ,, , , 函数的表达式为; (2)由题意,水深, 即, , ,,,1, ,或,; 所以,该船在至或至能安全进港 19、(1) (2)或 (3)存在,的取值范围为 【解析】(1)先化简,再代入进行求解;(2)换元法,化为二次函数,结合对称轴分类讨论,求出最小值时m的值;(3)换元法,参变分离,转化为在恒成立,根据单调性求出取得最大值,进而求出的取值范围

16、 【小问1详解】 , 当时, 【小问2详解】 设,则, ,,其对称轴为, 的最小值为, 则; 的最小值为; 则 综上,或 【小问3详解】 由,对所有都成立. 设,则, 恒成立, 在恒成立, 当时,递减,则在递增, 时取得最大值 得, ∴ 所以存在符合条件的实数,且m的取值范围为 20、 (1) (2)或. 【解析】(1)根据指数函数单调性求解即可; (2)由同角三角函数的基本关系求解,注意角所在的象限即可. 【详解】(1)因为, 所以,解得, 即 x的取值范围为. (2)因为,所以是第三象限角或第四象限角, 当是第三象限角时,, 当是第四象限角时,. 21、(1); (2)或. 【解析】(1)根据函数奇偶性的定义判断是奇函数,再由即可求解; (2)讨论和时,函数在上的单调性,根据单调性求出最值列方程,解方程可得的值. 【小问1详解】 因为的定义域为关于原点对称, , 所以为奇函数,故. 【小问2详解】 , 若,则单调递减,单调递增, 可得为减函数, 当时,, 解得:,符合题意; 若,则单调递增,单调递减, 可得为增函数, 当时, 解得:,符合题意, 综上所述:的值为或.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服