ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:487KB ,
资源ID:12790552      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790552.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(福建省清流一中2025-2026学年数学高一上期末综合测试模拟试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

福建省清流一中2025-2026学年数学高一上期末综合测试模拟试题含解析.doc

1、福建省清流一中2025-2026学年数学高一上期末综合测试模拟试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.下列函数中,既是奇函数,又在区间上单调递增的是( ) A. B. C D. 2.函数是指数函数,则的值是 A.4 B.1或3 C.3 D.1 3.已知函

2、数是定义在上的偶函数,当时,,则 A. B. C. D. 4. “”是“”的( )条件 A.充分不必要 B.必要不充分 C.充要 D.即不充分也不必要 5.下列各角中与角终边相同的角是(  ) A.-300° B.-60° C.600° D.1 380° 6.函数图像大致为() A. B. C. D. 7.设,,则a,b,c的大小关系是() A. B. C. D. 8.给定四个函数:①;②();③;④.其中是奇函数的有() A.1个 B.2个 C.3个 D.4个 9.已知,且,则的最小值为() A.3 B.4 C.6 D.9 10. (  )

3、A.0 B.1 C.6 D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.函数的最小值为______. 12.已知是定义在R上的偶函数,且在上单调递减,若(且),则a的取值范围为_____________. 13.已知函数(,)的部分图象如图所示,则的值为 14.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________ 15.在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,____________. 16.函数的零点个数为___ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.

4、已知函数 (1)求函数图象的相邻两条对称轴的距离; (2)求函数在区间上的最大值与最小值,以及此时的取值 18.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下: (1)求甲在比赛中得分均值和方差; (2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率 19.已知定义域为的奇函数. (1)求的值; (2)用函数单调性的定义证明函数在上是增函数. 20.某种树木栽种时高度为A米为常数,记栽种x年后的高度为,经研究发现,近似地满足,其中,a,b为常数,,已知,栽种三年后该树木的高度为栽种时高度的3倍 (Ⅰ)求a,b的值; (Ⅱ

5、求栽种多少年后,该树木的高度将不低于栽种时的5倍参考数据:, 21.在平面直角坐标系中,已知角的顶点都与坐标原点重合,始边都与x轴的非负半轴重合,角的终边与单位圆交于点,角的终边在第二象限,与单位圆交于点Q,扇形的面积为. (1)求的值; (2)求的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、你 2、C 【解析】由题意,解得.故选C 考点:指数函数的概念 3、D 【解析】由函数是定义在上的偶函数,借助奇偶性,将问题转化到已知区间上,再求函数值 【详解】因为是定义在上的偶函数,且当

6、时,, 所以,选择D 【点睛】已知函数的奇偶性问题,常根据函数的奇偶性,将问题进行转化,转化到条件给出的范围再进行求解 4、B 【解析】根据充分条件和必要条件的概念,结合题意,即可得到结果. 【详解】因为,所以“”是“”的必要不充分条件. 故选:B. 5、A 【解析】与角终边相同的角为:. 当时,即为-300°. 故选A 6、C 【解析】先分析给定函数的奇偶性,排除两个选项,再在x>0时,探讨函数值正负即可判断得解. 【详解】函数的定义域为, ,即函数是定义域上的奇函数,其图象关于原点对称,排除选项A,B; x>0时,,而,则有,显然选项D不满足,C符合要求.

7、故选:C 7、C 【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解. 【详解】由对数的性质,可得, 又由指数函数的性质,可得,即,且, 所以. 故选:C. 8、B 【解析】首先求出函数的定义域,再由函数的奇偶性定义即可求解. 【详解】①函数的定义域为,且, ,则函数是奇函数; ②函数的定义域关于原点不对称,则函数()为非奇非偶函数; ③函数的定义域为,,则函数不是奇函数; ④函数的定义域为,, 则函数是奇函数. 故选:B 9、A 【解析】将变形为,再将变形为,整理后利用基本不等式可求最小值. 【详解】因为,故, 故, 当且仅当时等号成立,

8、 故的最小值为3. 故选:A. 【点睛】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证. 10、B 【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可. 【详解】, 故选B. 【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性

9、质求最值. 【详解】 所以令,则 因此当时,取最小值, 故答案为: 【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题. 12、 【解析】根据偶函数的性质,结合绝对值的性质、对数函数的单调性,分类讨论,求出a的取值范围. 【详解】因为已知是定义在R上的偶函数,所以由,又因为 上单调递减,所以有. 当时,; 当时,. 故答案为: 【点睛】本题考查利用函数的奇偶性和单调性解不等式,考查了对数函数的单调性,考查了数学运算能力. 13、 【解析】先计算周期,则,函数, 又图象过点,则, ∴ 由于,则. 考点:依据图象求函数的解析式; 1

10、4、4π 【解析】设点的坐标为( 则 ,即( 以点的轨迹是以 为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π 15、 【解析】因为角与角关于轴对称, 所以,, 所以, 所以 答案: 16、2 【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可. 【详解】当x≤0时,, ∵,故此时零点为; 当x>0时,在上单调递增, 当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点; 综上,函数y在R上共有2个零点. 故答案为:2. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明

11、过程或演算步骤。 17、(1);(2)时,取得最大值为3;当时,取得最小值为 【解析】利用倍角公式降幂,再由辅助角公式可把函数化简为 (1)求出函数的半周期得答案; (2)由的范围求出的范围,利用正弦函数的性质可求原函数的最值及使原函数取得最值时的值 详解】. (1)函数图象的相邻两条对称轴的距离为; (2), ∴当,即时,取得最大值为3; 当,即时,取得最小值为 【点睛】本题考查型函数的图象与性质、倍角公式与两角和的正弦的应用,是基础题 18、 (1)15,32.25(2) 【解析】(1)由已知中的茎叶图,代入平均数和方差公式,可得得答案; (2)根据古典概型计算即

12、可求解. 【详解】(1)这8场比赛队员甲得分为:7,8,10,15,17,19,21,23 故平均数为:, 方差: . (2) 从甲比赛得分在分以下的场比赛中随机抽取场,共有15中种不同的取法, 其中抽到场都不超过均值的为得分共6种, 由古典概型概率公式得. 19、(1)2;(2)见解析 【解析】:(1)利用奇函数定义f(-x)=-f(x)中特殊值求a的值; (2)按按取点,作差,变形,判断的过程来即可 试题解析:(1)∵是定义域为的奇函数, ∴,即, ∴,即 解得:. (2)由(1)知,, 任取,且, 则 由,可知: ∴,,, ∴,即. ∴函数在

13、上是增函数. 点晴:本题属于对函数单调性应用的考察,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可. 20、(Ⅰ),;(Ⅱ)5年. 【解析】Ⅰ由及联立解方程组可得; Ⅱ解不等式,利用对数知识可得 【详解】Ⅰ,,  , 又,即,, 联立解得,, Ⅱ由Ⅰ得,由得,, 故栽种5年后,该树木的高度将不低于栽种时的5倍 【点睛】本题考查了函数解析式的求解及对数的运算,考查了函数的实际应用问题,属于中档题 21、(1) (2) 【解析】(1)利用任意角的三角函数定义进行求解; (2)先利用扇形的面积公式求出其圆心角,进而得到,再利用两角和的余弦公式进行求解. 小问1详解】 解:由任意角的三角函数定义,得 ,,; 【小问2详解】 设,因为扇形的半径为1,面积为, 所以,即, 又因为角的终边在第二象限,所以不妨设, 则 .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服