ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:986.50KB ,
资源ID:12790476      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790476.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2025年吉林省榆树市榆树一中数学高一上期末综合测试试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2025年吉林省榆树市榆树一中数学高一上期末综合测试试题含解析.doc

1、2025年吉林省榆树市榆树一中数学高一上期末综合测试试题 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知集合,,若,则实数的值为() A. B. C. D. 2.已知函数:①y=2x;②y=log2x;③y=x-1;④

2、y=;则下列函数图像(第一象限部分)从左到右依次与函数序号的对应顺序是(  ) A.②①③④ B.②③①④ C.④①③② D.④③①② 3.函数的部分图像如图所示,则的值为( ) A. B. C. D. 4.有四个关于三角函数的命题: :xR, +=: x、yR, sin(x-y)=sinx-siny : x=sinx : sinx=cosyx+y= 其中假命题的是 A., B., C., D., 5.函数的一条对称轴是() A. B. C. D. 6.已知函数,则下列说法不正确的是 A.的最小正周期是 B.在上单调递增 C.是奇函数 D.的对称

3、中心是 7.已知命题p:,,则为() A., B., C., D., 8.下列结论中正确的个数是() ①命题“所有的四边形都是矩形”是存在量词命题; ②命题“”是全称量词命题; ③命题“”的否定为“”; ④命题“是的必要条件”是真命题; A.0 B.1 C.2 D.3 9.已知集合A={x|<2},B={x|log2x>0},则(  ) A. B.A∩B= C.或 D. 10.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②; ③;④中,为“可相反函数”的全部序号是( ) A.①② B.②③ C.①③④ D.②③④ 二、填空题:本大题共6

4、小题,每小题5分,共30分。 11.命题“,”的否定是_________. 12.设x,.若,且,则的最大值为___ 13.扇形半径为,圆心角为60°,则扇形的弧长是____________ 14.已知函数的图像恒过定点,若点也在函数的图像上,则__________ 15.已知幂函数f(x)的图象过点(4,2),则f=________. 16.已知函数,,则它的单调递增区间为______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.如图,在四棱锥中,是正方形,平面,,,,分别是,,的中点 ()求四棱锥的体积 ()求证:平面平面

5、在线段上确定一点,使平面,并给出证明 18.在初中阶段函数学习中,我们经历了“确定函数的表达式—利用函数图象研究其性质”,函数图象在探索函数的性质中有非常重要的作用,下面我们对已知经过点的函数的图象和性质展开研究.探究过程如下,请补全过程: x … 0 1 7 9 … y … m 0 n … (1)①请根据解析式列表,则_________,___________; ②在给出的平面直角坐标系中描点,并画出函数图象; (2)写出这个函数的一条性质:__________; (3)已知函数,请结合两函数图象,直接写出不等式的解

6、集:____________. 19.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2. (1)求圆C的标准方程; (2)求圆C在点B处的切线方程. 20.已知函数为奇函数 (1)求实数k值; (2)设,证明:函数在上是减函数; (3)若函数,且在上只有一个零点,求实数m的取值范围 21.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求证: (1)3∈A; (2)偶数4k-2(k∈Z)不属于A 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合

7、题目要求的 1、B 【解析】根据集合,,可得,从而可得. 【详解】因为,, 所以,所以. 故选:B 2、D 【解析】图一与幂函数图像相对应,所以应④;图二与反比例函数相对应,所以应为③;图三与指数函数相对应,所以应为①;图四与对数函数图像相对应,所以应为② 所以对应顺序为④③①②,故选D 3、C 【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算. 【详解】由函数的最小值可知:, 函数的周期:,则, 当时,, 据此可得:,令可得:, 则函数的解析式为:, . 故选:C. 【点睛】本题考查了三角函数的图象与性质,属于中档题. 4、

8、A 【解析】故是假命题;令但故是假命题. 5、B 【解析】由余弦函数的对称轴为,应用整体代入法求得对称轴为,即可判断各项的对称轴方程是否正确. 【详解】由余弦函数性质,有,即, ∴当时,有. 故选:B 6、A 【解析】对进行研究,求出其最小正周期,单调区间,奇偶性和对称中心,从而得到答案. 【详解】,最小正周期为; 单调增区间为,即,故时,在上单调递增; 定义域关于原点对称,,故为奇函数; 对称中心横坐标为,即,所以对称中心为 【点睛】本题考查了正切型函数的最小正周期,单调区间,奇偶性和对称中心,属于简单题. 7、C 【解析】全称命题的否定定义可得. 【详解】根

9、据全称命题的否定,:,. 故选:C. 8、C 【解析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案. 【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误; 对于②:命题“”是全称量词命题;故②正确; 对于③:命题,则,故③错误; 对于④:可以推出,所以是的必要条件,故④正确; 所以正确的命题为②④, 故选:C 9、A 【解析】先分别求出集合A和B,再利用交集定义和并集定义能求出结果 【详解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>

10、1}.故选A 【点睛】本题考查交集、并集的求法及应用,考查指数对数不等式的解法,是基础题 10、D 【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论. 【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点 ①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”; ②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”; ③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”; ④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”. 结合图象可得:只有②③④符

11、合要求; 故选:D 二、填空题:本大题共6小题,每小题5分,共30分。 11、,## 【解析】根据全称量词命题的否定即可得出结果. 【详解】由题意知, 命题“”的否定为: . 故答案为:. 12、##1.5 【解析】由化简得,再由基本不等式可求得,从而确定最大值 【详解】, ,, ,, , , 当且仅当时即取等号, ,解得, 故, 故的最大值为, 故答案为: 13、 【解析】根据弧长公式直接计算即可. 【详解】解:扇形半径为,圆心角为60°, 所以,圆心角对应弧度为. 所以扇形的弧长为. 故答案为: 14、1 【解析】首先确定点

12、A的坐标,然后求解函数的解析式,最后求解的值即可. 【详解】令可得,此时, 据此可知点A的坐标为, 点在函数的图像上,故,解得:, 函数的解析式为,则. 【点睛】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力. 15、 【解析】根据图象过点的坐标,求得幂函数解析式,再代值求得函数值即可. 【详解】设幂函数为y=xα(α为常数). ∵函数f(x)的图象过点(4,2),∴2=4α,∴α=, ∴f(x)=,∴f=. 故答案为:. 【点睛】本题考查幂函数解析式的求解,以及幂函数函数值的求解,属综合简单题. 16、(区间写成半

13、开半闭或闭区间都对); 【解析】由得 因为,所以单调递增区间为 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)(2)见解析(3)当为线段的中点时,满足使平面 【解析】(1)根据线面垂直确定高线,再根据锥体体积公式求体积(2)先寻找线线平行,根据线面平行判定定理得线面平行,最后根据面面平行判定定理得结论(3)由题意可得平面,即,取线段的中点,则有,而,根据线面垂直判定定理得平面 试题解析:()解:∵平面, ∴ ()证明:∵,分别是,的中点 ∴, 由正方形, ∴, 又平面,∴平面, 同理可得:, 可得平面, 又,

14、∴平面平面 ()解:当为线段中点时,满足使平面, 下面给出证明:取的中点,连接,, ∵, ∴四点,,,四点共面,由平面, ∴, 又,, ∴平面, ∴, 又为等腰三角形,为斜边中点, ∴, 又, ∴平面,即平面 点睛:(1)探索性问题通常用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法. 18、(1)①,;②答案见解析 (2)函数

15、的最小值为 (3)或 【解析】(1)把、分别代入函数解析式即可把下表补充完整;描点、连线即可得到函数的图象; (2)这个函数的最小值为; (3)画出两个函数的图象,结合图象即可求解结论 【小问1详解】 解:①将和分别代入函数解析式可得: ,; ②根据表格描点,连线, x 0 1 3 5 7 9 y 0 1 可得这个函数的图象所示: ; 【小问2详解】 解:由图象可知:这个函数的最小值为,(答案不唯一); 【小问3详解】 解:在同一直角坐标系中作出和图象如图所示: 当时,令,解得, 当时,令,解得, 所

16、以两个函数图象相交于点, 所以当时,自变量x的取值范围为或, 即不等式的解集为或. 19、 (1)(2) 【解析】(1)做辅助线,利用勾股定理,计算BC的长度,然后得出C的坐标,结合圆的方程,即可得出答案.(2)利用直线垂直,斜率之积为-1,计算切线的斜率,结合点斜式,得到方程. 【详解】(1) 过C点做CDBA,联接BC,因为,所以,因为 所以,所以圆的半径 故点C的坐标为,所以圆的方程为 (2)点B的坐标为,直线BC的斜率为 故切线斜率,结合直线的点斜式

17、 解得直线方程为 【点睛】本道题目考查了圆的方程的求解和切线方程计算,在计算圆的方程的时候,关键找出圆的半径和圆心,建立方程,计算切线方程,可以结合点斜式,计算方程,即可. 20、(1)-1; (2)见解析; (3). 【解析】(1)由于为奇函数,可得,即可得出; (2)利用对数函数的单调性和不等式的性质通过作差即可得出; (3)利用(2)函数的单调性、指数函数的单调性,以及零点存在性定理即可得出m取值范围 【小问1详解】 为奇函数, , 即, ,整理得, 使无意义而舍去) 【小问2详解】 由(1),故, 设, (a)(b) 时,,,, (a

18、)(b), 在上时减函数; 【小问3详解】 由(2)知,h(x)在上单调递减,根据复合函数的单调性可知在递增, 又∵y=在R上单调递增, 在递增, 在区间上只有一个零点, (4)(5)≤0,解得. 21、(1)见解析;(2)见解析. 【解析】(1)由3=22-12即可证得; (2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分当m,n同奇或同偶时和当m,n一奇,一偶时两种情况进行否定即可. 试题解析: (1)∵3=22-12,3∈A; (2)设4k-2∈A,则存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立, 1、当m,n同奇或同偶时,m-n,m+n均为偶数, ∴(m-n)(m+n)为4的倍数,与4k-2不是4的倍数矛盾 2、当m,n一奇,一偶时,m-n,m+n均为奇数, ∴(m-n)(m+n)为奇数,与4k-2是偶数矛盾 综上4k-2不属于A

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服