ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:624.50KB ,
资源ID:12790423      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790423.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2026届河南省十所名校数学高一上期末教学质量检测试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2026届河南省十所名校数学高一上期末教学质量检测试题含解析.doc

1、2026届河南省十所名校数学高一上期末教学质量检测试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是( ) A. B. C. D. 2.设集合,

2、则是 A. B. C. D.有限集 3.在空间中,直线平行于直线,直线与为异面直线,若,则异面直线与所成角的大小为() A. B. C. D. 4.中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期或战国初年.算筹记数的方法是:个位、百位、万位、…上的数按纵式的数码摆出;十位、千位、十万位、…上的数按横式的数码摆出,如可用算筹表示为. 这个数字的纵式与横式的表示数码如图所示,则的运算结果用算筹表示为() A. B. C. D. 5.集合,,则P∩M等于 A. B. C. D. 6.函数y=xcosx+sinx在区间[–π

3、π]的图象大致为() A. B. C. D. 7.已知函数,则下列区间中含有的零点的是( ) A. B. C. D. 8.设,,,则、、的大小关系是( ) A. B. C. D. 9.圆过点的切线方程是() A. B. C. D. 10.已知函数是定义在R上的偶函数,且在上是单调递减的,设,,,则a,b,c的大小关系为() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知奇函数满足,,若当时,,则______ 12.在中,边上的中垂线分别交于点若,则_______ 13.函数 (a>0且a≠1)的图象恒过点

4、定,若角终边经过点,则___________. 14.某校高中三个年级共有学生2000人,其中高一年级有学生750人,高二年级有学生650人.为了了解学生参加整本书阅读活动的情况,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么在高三年级的学生中应抽取的人数为___________. 15.不论为何实数,直线恒过定点__________. 16.扇形的半径为2,弧长为2,则该扇形的面积为______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.在中,设角的对边分别为,已知. (1)求角的大小; (2)若,求周长的取值范围.

5、 18.定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界已知函数 当,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; 若函数在上是以3为上界的有界函数,求实数a的取值范围 19.已知函数f(x)=a-. (1)若2f(1)=f(2),求a的值; (2)判断f(x)在(-∞,0)上的单调性并用定义证明. 20.已知,,求下列各式的值: (1) (2) 21.已知函数 (1)求函数的最小正周期和在上的值域; (2)若,求的值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四

6、个选项中,恰有一项是符合题目要求的 1、C 【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果. 【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C. 【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等. 2、C 【解析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可 【详解】由集合S中的函数y=3x>0,得到集合S={y|y>0}; 由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S 故选C 【点睛】本题属

7、于求函数值域,考查了交集的求法,属于基础题 3、A 【解析】根据异面直线所成角的定义与范围可得结果. 【详解】因为且,故异面直线与所成角的大小为的补角,即为. 故选:A. 4、A 【解析】先利用指数和对数运算化简,再利用算筹表示法判断. 【详解】因为, 用算筹记数表示为, 故选:. 5、C 【解析】先求出集合M和集合P,根据交集的定义,即得。 【详解】由题得,,则. 故选:C 【点睛】求两个集合的交集并不难,要注意集合P是整数集。 6、A 【解析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象. 【详解】因为,则, 即题中所给的

8、函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD错误; 且时,,据此可知选项B错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项 7、C 【解析】分析函数的单调性,利用零点存在定理可得出结论. 【详解】由于函数为增函数,函数在和上均为增函数, 所以,函数在和上均为增函数. 对于A选项,当时,,,此时,, 所以,函数在上无零点; 对

9、于BCD选项,当时,,, 由零点存在定理可知,函数的零点在区间内. 故选:C. 8、B 【解析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系. 【详解】,即,,, 因此,. 故选:B. 9、D 【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程. 【详解】由题意知,圆:,圆心在圆上, , 所以切线的斜率为, 所以在点处的切线方程为, 即. 故选:D. 10、A 【解析】先判断出上单调递增,由,即可得到答案. 【详解】因为函数是定义在R上的偶函数,所以的图像关于y轴对称,且. 又在

10、上是单调递减的,所以在上单调递增. 因为,,所以: ,所以,即. 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解. 【详解】因为,即是以周期为的周期函数.为奇函数且当时,, ,当时, 所以 故答案为: 12、4 【解析】设,则, ,又,即,故答案为. 13、 【解析】利用指数函数的性质得出定点,由任意角三角函数的定义得出三角函数值,结合诱导公式代入求值即可 【详解】,且 故答案为: 14、 【解析】求出高三年级的学生人数,再根据分层抽

11、样的方法计算即可. 【详解】高三年级有学生人, 用分层抽样的方法从中抽取容量为200的样本, 应抽取高三年级学生的人数为. 故答案为: 15、 【解析】直线整理可得. 令,解得, 即直线恒过定点 点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点. 16、2 【解析】根据扇形的面积公式即可求解. 【详解】解:因为扇形的半径为2,弧长为2, 所以该扇形的面积为, 故答案为:2. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2) 【解析】(1)由三角函数的平方关系及余弦定理即

12、可得出(2)利用正弦定理、两角和差的正弦公式、三角函数的单调性转化为三角函数求值域即可得出. 【详解】(1)由题意知, 即, 由正弦定理得 由余弦定理得, 又. (2), 则的周长 . , , 周长的取值范围是. 【点睛】本题主要考查了三角函数的平方关系,正余弦定理,两角和差的正弦公式,三角函数的单调性,属于中档题. 18、(1)值域为(3,+∞);不是有界函数,详见解析(2) 【解析】(1)当a=1时,f(x)=1+ 因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞), 故不存在常数M>0,使|f(x)|

13、≤M成立, 所以函数f(x)在(-∞,0)上不是有界函数. (2)由题意知,|f(x)|≤3在[0,+∞)上恒成立. -3≤f(x)≤3,-4-≤a·≤2-,所以-4·2x-≤a≤2·2x-在[0,+∞)上恒成立.所以≤a≤, 设2x=t,h(t)=-4t-,p(t)=2t-,由x∈[0,+∞)得t≥1,设1≤t10,p(t1)-p(t2)=<0,所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1,所以实数a的取值范围为[-5,1] 1

14、9、(1)3(2)f(x)在(-∞,0)上是单调递增的,证明见解析 【解析】(1)由已知列方程求解; (2)由复合函数单调性判断,根据单调性定义证明; 【小问1详解】 ∵2f(1)=f(2),∴2(a-2)=a-1, ∴a=3. 【小问2详解】 f(x)在(-∞,0)上是单调递增的,证明如下: 设x1,x2∈(-∞,0),且x10. 又x1

15、的. 20、(1). (2) 【解析】(1)利用二倍角公式和诱导公式直接求解; (2)判断出,根据,求出的值. 【小问1详解】 因为, 所以. 【小问2详解】 . 因为,所以,所以,所以, 所以, 所以 21、(1)见解析;(2) 【解析】(1)由三角函数中的恒等变换应用化简函数解析式为f(x)=,进而得到函数的周期与值域; (2)由(1)知,利用二倍角余弦公式可得所求. 【详解】(1)由已知, , , ∴ 又,则 所以的最小正周期为 在时的值域为. (2)由(1)知, 所以 则 【点睛】本题考查三角函数的图像与性质,考查三角函数的化简求值,考查恒等变形能力,属于中档题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服