ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:485.50KB ,
资源ID:12790313      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790313.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(山东省无棣二中2025-2026学年高一数学第一学期期末质量检测试题含解析.doc)为本站上传会员【y****6】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

山东省无棣二中2025-2026学年高一数学第一学期期末质量检测试题含解析.doc

1、山东省无棣二中2025-2026学年高一数学第一学期期末质量检测试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.以下元素的全体不能够构成集合的是 A.中国古代四大发明 B.周长为的三角形 C.方程的实数解 D

2、地球上的小河流 2.角的终边过点,则() A. B. C. D. 3.函数的零点为,,则的值为() A.1 B.2 C.3 D.4 4.过点且平行于直线的直线方程为 A. B. C. D. 5.已知角α的终边过点P(4,-3),则sinα+cosα的值是( ) A. B. C. D. 6.设a=,b=,c=,则a,b,c的大小关系是(  ) A. B. C. D. 7.若函数在区间上单调递增,则实数k的取值范围是(  ) A. B. C. D. 8.下列函数中,既是奇函数又在区间上单调递增的是( ) A. B. C. D. 9.设,则

3、 A.f(x)与g(x)都是奇函数 B.f(x)是奇函数,g(x)是偶函数 C.f(x)与g(x)都是偶函数 D.f(x)是偶函数,g(x)是奇函数 10.已知平面直角坐标系中,的顶点坐标分别为,,,G为所在平面内的一点,且满足,则G点的坐标为( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.计算的结果是_____________ 12.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________. 13.已知函数的零点依次为a,b,c,则=________ 14.计算:__________. 15.设函数,则

4、下列结论 ①的图象关于直线对称 ②的图象关于点对称 ③的图象向左平移个单位,得到一个偶函数的图象 ④的最小正周期为,且在上为增函数 其中正确的序号为________.(填上所有正确结论的序号) 16.若是幂函数且在单调递增,则实数_______. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知直线经过点,且与直线垂直. (1)求直线的方程; (2)若直线与平行且点到直线的距离为,求直线的方程. 18.某港口水深y(米)是时间t (0≤t≤24,单位:小时)的函数,下面是水深数据: t(小时) 0 3 6 9 12

5、 15 18 21 24 y(米) 10.0 13.0 9.9 7.0 100 13.0 10.1 7.0 10.0 据上述数据描成的曲线如图所示,该曲线可近似的看成函数的图象 (1)试根据数据表和曲线,求的解析式; (2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港? 19.已知集合,或,. (1)求,; (2)求. 20.若函数定义域为,且存在非零实数,使得对于任意恒成立,称函数满足性质 (1)分别判断下列函数是否满足性质并说明理由 ① ② (

6、2)若函数既满足性质,又满足性质,求函数的解析式 (3)若函数满足性质,求证:存在,使得 21.已知,,,为坐标原点. (1)若 ,求的值; (2)若,且,求 . 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】地球上的小河流不确定,因此不能够构成集合,选D. 2、B 【解析】由余弦函数的定义计算 【详解】由题意到原点的距离为, 所以 故选:B 3、C 【解析】根据零点存在性定理即可求解. 【详解】是上的增函数, 又, 函数的零点所在区间为, 又, . 故选:C.

7、 4、A 【解析】解析:设与直线平行直线方程为, 把点代入可得,所以所求直线的方程为, 故选A 5、A 【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值 【详解】∵知角α的终边经过点P(4,-3), ∴sinα,cosα, ∴sinα+cosα 故选:A 6、C 【解析】根据指数和幂函数的单调性比较大小即可. 【详解】因为在上单调递增,在上单调递减 所以,故. 故选:C 7、C 【解析】根据函数的单调性得到关于k的不等式组,解出即可 【详解】解:f(x)==1+, 若f(x)在(﹣2,+∞)上单调递增, 则,故k≤﹣2,

8、故选:C 8、D 【解析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确. 【详解】对于A:是偶函数, 即选项A错误; 对于B:是奇函数,但, 所以在区间上不单调递增, 即选项B错误; 对于C:是奇函数, 但的定义域为,, 即选项C错误; 对于D:因为,, 有, 即奇函数; 因为在区间上单调递增, 在区间上单调递增, 所以在区间上单调递增, 即选项D正确. 故选:D. 9、B 【解析】定义域为,定义域为R,均关于原点对称 因为,所以f(x)

9、是奇函数, 因为,所以g(x)是偶函数,选B. 10、A 【解析】利用向量的坐标表示以及向量坐标的加法运算即可求解. 【详解】由题意易得,, , . 即G点的坐标为, 故选:A. 二、填空题:本大题共6小题,每小题5分,共30分。 11、. 【解析】根据对数的运算公式,即可求解. 【详解】根据对数的运算公式,可得. 故答案为:. 12、 【解析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决. 【详解】由得,即函数零点是直线与函数图象交点横坐标, 当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数, 在坐标平面

10、内作出函数的图象,如图, 观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点, 所以实数的取值范围是:. 故答案为: 13、 【解析】根据对称性得出,再由得出答案. 【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以. 故答案为: 14、4 【解析】 故答案为4 15、③ 【解析】利用正弦型函数的对称性判断①②的正误,利用平移变换判断③的正误,利用周期性与单调性判断④的正误. 【详解】解:对于①,因为f()=sinπ=0,所以不是对称轴,故①错; 对于②,因为f()=sin,所以点不是对称中心,故②错; 对于③,将把f(x)的图象向

11、左平移个单位,得到的函数为 y=sin[2(x)]=sin(2x)=cos2x,所以得到一个偶函数的图象; 对于④,因为若x∈[0,],则,所以f(x)在[0,]上不单调,故④错; 故正确的结论是③ 故答案为③ 【点睛】此题考查了正弦函数的对称性、三角函数平移的规律、整体角处理的方法,正弦函数的图象与性质是解本题的关键 三、 16、2 【解析】由幂函数可得,解得或2,检验函数单调性求解即可. 【详解】为幂函数,所以,解得或2. 当时,,在不单调递增,舍去; 当时,,在单调递增成立. 故答案为. 【点睛】本题主要考查了幂函数的定义及单调性,属于基础题. 三、解答题

12、本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、 (1) ;(2) 直线方程为或. 【解析】⑴ 利用相互垂直的直线斜率之间的关系求出直线的斜率,代入即可得到直线的方程;⑵由已知设直线的方程为,根据点到直线的距离公式求得或,即可得到直线的方程 解析:(1)由题意直线的斜率为1, 所求直线方程为,即. (2)由直线与直线平行,可设直线的方程为, 由点到直线的距离公式得, 即,解得或. ∴所求直线方程为或. 18、(1);(2)至或至. 【解析】(1)根据数据,可得,由,可求,从而可求函数的表达式; (2)由题意,水深,即,从而可求

13、t的范围,即可得解; 【详解】解:(1)根据数据,可得, ,, , , 函数的表达式为; (2)由题意,水深, 即, , ,,,1, ,或,; 所以,该船在至或至能安全进港 19、(1)或, (2) 【解析】(1)根据并集和交集定义即可求出; (2)根据补集交集定义可求. 【小问1详解】 因为,或, 所以或,; 【小问2详解】 或,, 所以. 20、(1)①②满足性质,理由见解析 (2) (3)证明见解析 【解析】(1)计算,,得到答案. (2)根据函数性质变换得到,,,解得答案. (3)根据函数性质得到,取,当时满足条件,得到答案. 【小问1详解】 ,故满足; ,故满足. 【小问2详解】 且, 故, ,,解得. 【小问3详解】 , 故, 取得到,即, 取,当时,, 故存在满足. 21、(1)(2) 【解析】(1)由向量平行的坐标运算列式直接求解即可; (2)先求得的坐标,利用坐标表示向量的模长,列方程求得,从而得,利用向量坐标表示数量积即可得解. 【详解】(1)依题,, 因,所以, 所以 (2)因为, 所以, 所以, 因为,所以,所以, 所以 【点睛】本题主要考查了向量的坐标运算,包括共线、模长、数量积,属于基础题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服