ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:596KB ,
资源ID:12790296      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790296.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2026届福建省龙岩市龙岩九中数学高一上期末经典模拟试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2026届福建省龙岩市龙岩九中数学高一上期末经典模拟试题含解析.doc

1、2026届福建省龙岩市龙岩九中数学高一上期末经典模拟试题 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.三个数的大小关系为() A. B. C. D. 2.已知直线的斜率为1,则直线的倾斜角为 A. B.

2、C. D. 3.已知函数是上的奇函数,且对任意实数、当时,都有.如果存在实数,使得不等式成立,则实数的取值范围是 A. B. C. D. 4.已知函数是定义在R上的周期为2的偶函数,当时,,则 A. B. C. D. 5.函数f(x)=在[—π,π]的图像大致为 A. B. C. D. 6.已知,,则下列不等式中恒成立的是() A. B. C. D. 7.已知,,,则( ) A. B. C. D. 8.设,,,则,,的大小关系为() A. B. C. D. 9.函数f(x)=sin(x+)+cos(x-)的最大值是(  ) A. B. C.1 D

3、 10.在正六棱柱任意两个顶点的连线中与棱AB平行的条数为() A.2 B.3 C.4 D.5 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知一个扇形的面积为,半径为,则它的圆心角为______弧度 12.___________. 13.设x、y满足约束条件,则的最小值是________. 14.设函数,其图象的一条对称轴在区间内,且的最小正周期大于,则的取值范围是____________ 15.已知函数,则=_________ 16.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________ . 三、解答题:本大题共5小题,共70分。

4、解答时应写出文字说明、证明过程或演算步骤。 17.已知函数是奇函数,是偶函数 (1)求的值; (2)设,若对任意恒成立,求实数a的取值范围 18.已知函数. (1)当时,试判断并证明其单调性. (2)若存在,使得成立,求实数的取值范围. 19.已知集合,,. (1)求; (2)若,求实数的取值范围. 20.为何值时,直线与: (1)平行 (2)垂直 21.已知函数是函数图象的一条对称轴. (1)求的最大值,并写出取得最大值时自变量的取值集合; (2)求在上的单调递增区间. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选

5、项中,恰有一项是符合题目要求的 1、A 【解析】利用指数对数函数的性质可以判定,从而做出判定. 【详解】因为指数函数是单调增函数,是单调减函数,对数函数是单调减函数,所以, 所以, 故选:A 2、A 【解析】设直线的倾斜角为,则 由直线的斜率,则 故 故选 3、A 【解析】∵f(x)是R上的奇函数, ∴, 不妨设a>b,∴a﹣b>0,∴f(a)﹣f(b)>0, 即f(a)>f(b) ∴f(x)在R上单调递增, ∵f(x)为奇函数, ∴f(x﹣c)+f(x﹣c2)>0等价于f(x﹣c)>f(c2﹣x) ∴不等式等价于x﹣c>c2﹣x,即c2+c<2x, ∵

6、存在实数使得不等式c2+c<2x成立, ∴c2+c<6,即c2+c﹣6<0, 解得,, 故选A 点睛:处理抽象不等式的常规方法:利用单调性及奇偶性,把函数值间的不等关系转化为具体的自变量间的关系;同时注意区分恒成立问题与存在性问题. 4、A 【解析】依题意有. 5、D 【解析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案 【详解】由,得是奇函数,其图象关于原点对称.又.故选D 【点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养.采取性质法或赋值法,利用数形结合思想解题 6、D 【解析】直接利用特殊值检验及其不等式

7、的性质判断即可. 【详解】对于选项A,令,,但,则A错误; 对于选项B,令,,但,则B错误; 对于选项C,当时,,则C错误; 对于选项D,有不等式的可加性得,则D正确, 故选:D. 7、B 【解析】 分析】由指数函数和对数函数单调性,结合临界值可确定大小关系. 【详解】,. 故选:B. 8、D 【解析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案. 【详解】因为,,,所以. 故选:D. 9、A 【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值. 【详解】 整理得,利用辅助角公式得,所以函数的最大值为,故选A. 【点睛】

8、三角函数求最值或者求值域一定要先将函数化成的形函数. 10、D 【解析】作出几何体的直观图观察即可. 【详解】解:连接CF,C1F1,与棱AB平行的有,共有5条, 故选:D. 二、填空题:本大题共6小题,每小题5分,共30分。 11、## 【解析】利用扇形的面积公式列方程即可求解. 【详解】设扇形的圆心角为, 扇形的面积即,解得, 所以扇形的圆心角为弧度, 故答案为:. 12、2 【解析】利用换底公式及对数的性质计算可得; 【详解】解:. 故答案为: 13、-6 【解析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从

9、而得到的最小值即可 【详解】解:由得, 作出不等式组对应的平面区域如图(阴影部分ABC): 平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小, 由得,即, 代入目标函数, 得 ∴目标函数的最小值是﹣6 故答案为: 【点睛】本题考查简单线性规划问题,属中档题 14、 【解析】由题可得,利用正弦函数的性质可得对称轴为,结合条件即得. 【详解】∵, 由,得, 当时,,则,解得此时, 当时,,则,解得此时,不合题意, 当取其它整数时,不合题意, ∴. 故答案:. 15、 【解析】按照解析式直接计算即可. 【详解】. 故答案为:-3. 16

10、 【解析】正方体体积8,可知其边长为2, 正方体的体对角线为=2, 即为球的直径,所以半径为, 所以球的表面积为=12π 故答案为:12π 点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: . 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演

11、算步骤。 17、(1) (2) 【解析】(1)利用奇函数的定义可求得实数的值,利用偶函数的定义可求得实数的值,即可求得的值; (2)分析可知函数在上为增函数,可求得,根据已知条件得出关于实数的不等式组,由此可解得实数的取值范围. 【小问1详解】 解:由于为奇函数,且定义域为,则, 因为,所以,, 所以,恒成立,所以,,即. 由于,, 是偶函数, ,则, 所以,,所以,, 因此,. 【小问2详解】 解:,, 因为函数在上为增函数,函数在上为减函数, 所以,函数在区间上是增函数, 当时,,所以,, 由题意得,解之得, 因此,实数的取值范围是. 18

12、1)单调递增,证明见解析; (2). 【解析】(1)利用单调性定义证明的单调性; (2)根据奇偶性定义判断奇偶性,结合(1)的区间单调性确定上的单调性,进而求的值域,令将问题转化为求参数范围. 【小问1详解】 在上单调递增,证明如下: ,且,则, 由得:,, 所以,即在上的单调递增 【小问2详解】 由题设,使, 又,即是偶函数, 结合(1)知:在单调递减,在上单调递增,又, 所以,即, 令,则使,可得, 令在单调递增,故; 所以,即. 19、(1);(2) 【解析】(1)可利用数轴求两个集合的交集; (2)根据子集关系列出不等式组,解不等式组即

13、可 【详解】(1) (2)因为, 所以当时,有,解得, 所以实数的取值范围是 【点睛】解决集合问题应注意的问题: ①认清元素的属性:解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件; ②注意元素的互异性:在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误; ③防范空集:在解决有关,等集合问题时,往往忽略空集的情况,一定要先考虑是否成立,以防漏解 20、(1) 或 ; (2) . 【解析】利用直线与直线平行与垂直的性质即可求出参数a的值.特别注意直线斜率不存在的情况. 【详

14、解】(1)当或时,两直线即不平行,也不垂直. 当且,直线的斜率, 在轴上的截距; 直线的斜率, 在轴上的截距. 由,且,即,且, 得或, 当或时,两直线平行. (2)由,即,得. 当时,两直线垂直 【点睛】本题主要考查直线与直线平行与垂直的性质,属于基础题型. 21、(1),;, (2) 【解析】(1)化简得,根据对称轴可得的值,进而根据正弦函数的性质可得最值; (2)根据正弦函数的性质可得在上的单调递增区间 【小问1详解】 由已知 又是函数图象的一条对称轴, 所以,得, , 即, ,此时,即, ,此时,即, 【小问2详解】 ,则, 当时,即时,单调递增, 在上的单调递增区间为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服