ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:735KB ,
资源ID:12790195      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12790195.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(山东省莒南县大店中学2025年数学高一上期末教学质量检测试题含解析.doc)为本站上传会员【zh****1】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

山东省莒南县大店中学2025年数学高一上期末教学质量检测试题含解析.doc

1、山东省莒南县大店中学2025年数学高一上期末教学质量检测试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.如图所示,一个水平放置的平面图形的直观

2、图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( ) A. B. C. D. 2.如图,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的侧面积为() A. B. C. D. 3.点M(1,4)关于直线l:x-y+1=0对称的点的坐标是( ) A.(4,1) B.(3,2) C.(2,3) D.(-1,6) 4.在边长为3的菱形中,,,则=() A. B.-1 C. D. 5.在中,若,则的形状为() A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形

3、6.已知幂函数的图象过点,则 A. B. C.1 D.2 7.已知是幂函数,且在第一象限内是单调递减,则的值为(  ) A.-3 B.2 C.-3或2 D.3 8.若,,,则a,b,c之间的大小关系是(  ) A.c>b>a B.c>a>b C.a>c>b D.b>a>c 9.下列函数值为的是( ) A.sin390° B.cos750° C.tan30° D.cos30° 10.若向量,,满足,则 A.1 B.2 C.3 D.4 二、填空题:本大题共6小题,每小题5分,共30分。 11.给出下列命题: ①存在实数,使; ②函数是偶函数; ③若是第一

4、象限角,且,则; ④是函数的一条对称轴方程 以上命题是真命题的是_______(填写序号) 12.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________. 13.已知函数,则当______时,函数取到最小值且最小值为_______. 14.已知a,b为直线,α,β,γ为平面,有下列四个命题: (1)a∥α,b∥β,则a∥b; (2)a⊥γ,b⊥γ,则a∥b; (3)a∥b,b⊂α,则a∥α; (4)a⊥b,a⊥α,则b∥α; 其中正确命题是__ 15.已知向量,,,,则与夹角的余弦值为______ 16.已知函数在区间

5、是单调递增函数,则实数的取值范围是______ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.给定函数,,,用表示,中的较大者,记为. (1)求函数的解析式并画出其图象; (2)对于任意的,不等式恒成立,求实数的取值范围. 18.正数x,y满足. (1)求xy的最小值; (2)求x+2y的最小值 19.设集合,,. (1)求,; (2)若,求; (3)若,求的取值范围. 20.已知定义在上的奇函数,当时,. (1)求函数在上的解析式; (2)在给出的直角坐标系中作出的图像,并写出函数的单调区间. 21.已知分别是定

6、义在上的奇函数和偶函数,且 (1)求的解析式; (2)若时,对一切,使得恒成立,求实数的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】根据斜二测画法的规则,得出该平面图象的特征,结合面积公式,即可求解. 【详解】由题意,根据斜二测画法规则,可得该平面图形是上底长为,下底长为,高为的直角梯形,所以计算得面积为. 故选:D. 2、A 【解析】几何体是一个圆柱,圆柱的底面是一个直径为2的圆,圆柱的高是2,侧面展开图是一个矩形,进而求解. 【详解】由三视图可知该几何体是底面半

7、径为1高为2的圆柱,∴该几何体的侧面积为, 故选:A 【点睛】本题考查三视图和圆柱的侧面积,关键在于由三视图还原几何体. 3、B 【解析】设出关于直线对称点的坐标,利用中点和斜率的关系列方程组,解方程组求得对称点的坐标. 【详解】设关于直线对称点的坐标为,线段的中点坐标为,且在直线上,即①.由于直线的斜率为,所以线段的斜率为②.解由①②组成的方程组得,即关于直线对称点的坐标为. 故选:B 【点睛】本小题主要考查点关于直线的对称点的坐标的求法,考查方程的思想,属于基础题. 4、C 【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项. 【详解】 . 故选

8、C. 【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题. 5、D 【解析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解. 【详解】因为, 由可得:, 即, 所以, 所以, 所以或, 因为,, 所以或, 所以的形状为等腰三角形或直角三角形, 故选:D. 6、B 【解析】先利用待定系数法求出幂函数的表达式,然后将代入求得的值. 【详解】设,将点代入得,解得,则, 所以,答案B. 【点睛】主要考查幂函数解析式的求解以及函数值求解,属于基础题. 7、A 【解析】根据幂函数的定义判断即可

9、 【详解】由是幂函数, 知,解得或. ∵该函数在第一象限内是单调递减的,∴. 故. 故选:A. 【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题 8、C 【解析】利用指数函数与对数函数的单调性即可得出 【详解】∵a=22.5>1,<0,, ∴a>c>b, 故选C 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题 9、A 【解析】由诱导公式计算出函数值后判断 详解】, , , 故选:A 10、A 【解析】根据向量的坐标运算,求得,再根据向量的数量积的坐标运算,即可求解,得到答案. 【详解】由题意,向量,,,

10、则向量, 所以,解得,故选A. 【点睛】本题主要考查了向量的坐标运算,及向量的数量积的坐标运算的应用,其中解答中熟记向量的数量积的坐标运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、②④ 【解析】根据三角函数的性质,依次分析各选项即可得答案. 【详解】解:①因为,故不存在实数,使得成立,错误; ②函数,由于是偶函数,故是偶函数,正确; ③若,均为第一象限角,显然,故错误; ④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确. 故正确的命题是:②④ 故答案为:②④ 12、2

11、x+y-14=0 【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出. 【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2, 故所求直线方程是y-4=-2(x-5),即2x+y-14=0. 故答案为:2x+y-14=0. 13、 ①. ②. 【解析】利用基本不等式可得答案. 【详解】因为, 所以, 当且仅当即等号成立. 故答案为:;. 14、② 【解析】对于①,,则,位置关系不确定,的位置关系不能确定;对于②,由垂直于同一平面的两直线平行知,结论正确;对于③,,则或;对于④,,则或,故答案为②. 【方法点晴】本题主要考查线面平行的判定与

12、性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价. 15、 【解析】运用平面向量的夹角公式可解决此问题. 【详解】根据题意得,, , , 故答案为. 【点睛】本题考查平面向量夹角公式的简单应用.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角, (此时往往用坐标形式求解);(2)求投影, 在 上的投影是;(3)向量垂直则

13、4)求向量 的模(平方后需求). 16、 【解析】求出二次函数的对称轴,即可得的单增区间,即可求解. 【详解】函数的对称轴是,开口向上, 若函数在区间单调递增函数, 则, 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1),作图见解析; (2). 【解析】(1)根据题意,分类讨论,结合一元二次不等式的解法进行求解并画出图象即可; (2)构造新函数,利用分类讨论思想,结合二次函数的性质进行求解即可. 【小问1详解】 ①当即时,,则, ②当即或时,,则, 故 图象如下: 【小问2详解】 由(1)得

14、当时,, 则在上恒成立等价于在上恒成立. 令,, 原问题等价于在上的最小值. ①当即时,在上单调递增, 则,故. ②当即时,在上单调递减,在上单调递增, 则,由时,,故不合题意. 综上所述,实数的取值范围为. 18、 (1)36;(2) 【解析】(1)由基本不等式可得,再求解即可; (2)由,再求解即可. 【详解】解:(1)由得xy≥36,当且仅当,即时取等号, 故xy的最小值为36. (2)由题意可得, 当且仅当,即时取等号, 故x+2y的最小值为. 【点睛】本题考查了基本不等式的应用,重点考查了拼凑法构造基本不等式,属中档题. 19、(1),(2)(3

15、 【解析】(1)先可求出,再利用交集,并集运算求解即可; (2)由(1)得,然后代入,即可求得; (3)由可得到,解不等式组求出的范围即可. 【详解】(1)由已知得, 所以,; (2)由(1)得, 当时,, 所以.; (3)因为, 所以, 解得. 【点睛】本题考查集合的交并补的运算,考查集合的包含关系的含义,是基础题. 20、(1) (2)图像答案见解析,单调递增区间为,单调递减区间为 【解析】(1)由函数的奇偶性的定义和已知解析式,计算时的解析式,可得所求的解析式; (2)由分段函数的图像画法,可得所求图像,结合的图像,可得的单调区间 【小问1详解】 设

16、则,所以, 又为奇函数,所以, 又为定义在上的奇函数,所以, 所以 【小问2详解】 作出函数的图像,如图所示: 函数的单调递增区间为,单调递减区间为. 21、(1);(2)综上或 【解析】(1)利用奇偶性构建方程组,解之即可;(2)恒成立等价于在恒成立(其中), 令,讨论二次项系数,利用三个“二次”的关系布列不等式组即可. 试题解析: (1)①,, 分别是定义在上的奇函数和偶函数,②,由①②可知 (2)当时,, 令,即 , 恒成立, 在恒成立.令 (ⅰ)当时,(舍); (ⅱ)法一:当时, 或 或 解得. 法二:由于,所以或 解得. (ⅲ)当时,,解得综上或 点睛:研究不等式恒成立或存在型问题,首先要构造函数,然后研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服