ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:629KB ,
资源ID:12774013      下载积分:12.58 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12774013.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(吉林省长春市十一高中等九校教育联盟2025-2026学年高一上数学期末联考模拟试题含解析.doc)为本站上传会员【zj****8】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

吉林省长春市十一高中等九校教育联盟2025-2026学年高一上数学期末联考模拟试题含解析.doc

1、吉林省长春市十一高中等九校教育联盟2025-2026学年高一上数学期末联考模拟试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为 A. B. C. D. 2.设集合M={x|x=

2、×180°+45°,k∈Z},N={x|x=×180°+45°,k∈Z},那么(  ) A.M=N B.N⊆M C.M⊆N D.M∩N=∅ 3.方程的实数根所在的区间是( ) A. B. C. D. 4.已知函数是定义在上的奇函数,当时,,则当时,的表达式是() A. B. C. D. 5.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为 A. B. C. D. 6.若是第三象限角,且,则是 A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 7.已知函数,且f(5a﹣2)>﹣f(a﹣2),则a的取值范围是(  ) A

3、0,+∞) B.(﹣∞,0) C. D. 8.工艺扇面是中国书面一种常见的表现形式.某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为,外圆半径为,内圆半径为.则制作这样一面扇面需要的布料为(). A. B. C. D. 9.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是 A. B. C.与共线 D. 10.若log2a<0,,则(  ) A.a>1,b>0 B.a>1,b<0 C.00 D.0

4、则的取值范围是____ 12.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________ 13.已知,则的值为________ 14.已知扇形的圆心角为,其弧长是其半径的2倍,则__________ 15.已知圆锥的侧面展开图是一个半径为,圆心角为的扇形,则此圆锥的高为________. 16.已知向量,,,则=_____. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知集合,集合 (1)当时,求; (2)当时,求m的取值范围 18.在三棱锥中,平面平面,,,分别是棱,上的点 (1)为的中点,

5、求证:平面平面. (2)若,平面,求的值. 19.已知函数,,其中 (1)写出的单调区间(无需证明); (2)求在区间上的最小值; (3)若对任意,均存在,使得成立,求实数的取值范围 20.抛掷两颗骰子,计算: (1)事件“两颗骰子点数相同”的概率; (2)事件“点数之和小于7”概率; (3)事件“点数之和等于或大于11”的概率. 21.已知函数的定义域为 (1)当时,求函数的值域; (2)若函数在定义域上是减函数,求的取值范围; (3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每

6、个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos ∠DFD==. 2、C 【解析】变形表达式为相同的形式,比较可得 【详解】由题意可 即为的奇数倍构成的集合, 又,即为的整数倍构成的集合,, 故选C 【点睛】本题考查集合的包含关系的判定,变形为同样的形式比较是解决问题的关键,属基础题 3、B 【解析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B. 4、D 【解析】利用函数的奇偶性求在上的表达式.

7、 【详解】令,则,故, 又是定义在上的奇函数, ∴. 故选:D. 5、D 【解析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得 6、D 【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案 【详解】是第三象限角, , 则, 即是第二象限或者第四象限角, ,是第四象限角 故选:D 7、D 【解析】由定义可求函数的奇偶性,进而将所求不等式转化为f(5a﹣2)>f(﹣a+2),结合函数的单调性可得关于a的不等式,从而可求出a的取值范围. 【详解】解:根据题意,函数,其定义域为R, 又由f(﹣x)f(x),f(x)为奇函数, 又,函

8、数y=9x+1为增函数,则f(x)在R上单调递增; f(5a﹣2)>﹣f(a﹣2)⇒f(5a﹣2)>f(﹣a+2)⇒5a﹣2>﹣a+2,解可得, 故选:D. 【点睛】关键点睛:本题的关键是由奇偶性转化已知不等式,再求出函数单调性求出关于a的不等式. 8、B 【解析】由扇形的面积公式,可得制作这样一面扇面需要的布料. 【详解】解:根据题意,由扇形的面积公式可得: 制作这样一面扇面需要的布料为. 故选:B. 【点睛】本题考查扇形的面积公式,考查学生的计算能力,属于基础题. 9、D 【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2

9、m,∴∠ACB=∠CED=60°,∠ACE=90°,, 故A、B、C成立;而,, 即不成立,故选D. 10、D 【解析】,则;,则,故选D 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解. 【详解】由题意,函数,要先画出函数的图象,如图所示, 又由方程有4个不同的实数根, 即函数的图象与有四个不同的交点, 可得,且, 则=, 因为,则,所以. 故答案为. 【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4

10、个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题. 12、 【解析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解. 【详解】由题意,得, 又因为在上是增函数,所以当时,有, 所以在时恒成立, 即在时恒成立, 转化为在时恒成立, 所以或或 解得:或或, 即实数的取值范围是 【点睛】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题. 13、 【解析】利用

11、正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值. 【详解】 【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力. 14、-1 【解析】由已知得,所以 则,故答案. 15、 【解析】设此圆的底面半径为,高为,母线为,根据底面圆周长等于展开扇形的弧长,建立关系式解出,再根据勾股定理得 ,即得此圆锥高的值 【详解】设此圆的底面半径为,高为,母线为, 因为圆锥的侧面展开图是一个半径为,圆心角为的扇形, 所以,得 ,解之得, 因此,此圆锥的高, 故答案为: 【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆

12、锥的定义与性质和旋转体侧面展开等知识,属于基础题. 16、 【解析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值. 【详解】因为向量,, 所以 则 即 解得 故答案为: 【点睛】本题考查了向量垂直的坐标关系,属于基础题. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1); (2). 【解析】(1)利用集合的交运算求即可. (2)根据已知,由集合的交集结果可得,即可求m的取值范围 【小问1详解】 由题设,,而, ∴. 【小问2详解】 由,显然, ∴,可得.

13、18、(1)证明见解析;(2) 【解析】(1)根据等腰三角形的性质,证得,由面面垂直的性质定理,证得平面,进而证得平面平面. (2)根据线面平行的性质定理,证得,平行线分线段成比例,由此求得的值. 【详解】(1),为的中点,所以. 又因为平面平面,平面平面,且平面, 所以平面, 又平面,所以平面平面. (2)∵平面,面,面面 ∴, ∴. 【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查线面平行的性质定理,考查空间想象能力和逻辑推理能力,属于中档题. 19、(1)的单调递增区间是,单调递减区间是 (2) (3) 【解析】(1)利用去掉绝对值及一次函数的性质即可

14、求解; (2)根据(1)的结论,利用单调性与最值的关系即可求解; (3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况讨论即可求解. 【小问1详解】 由,得, 所以函数的单调递增区间是,单调递减区间是, 【小问2详解】 由(1)知,函数的单调递增区间是,单调递减区间是, 当,即时,当时,函数取得最小值为 , 当,即时,当时,函数取得最小值为 , 综上所述,函数在区间上的最小值为. 【小问3详解】 因为对任意,均存在,使得成立 等价于,,. 而当时,,故必有 由第(2)小题可知,,且,所以, ①当时, ∴,可得, ②当时, ∴,可得,

15、 ③当时, ∴或,可得, 综上所述,实数的取值范围为 20、(1);(2);(3) 【解析】(1)根据所有的基本事件的个数为,而所得点数相同的情况有种,从而求得事件“两颗骰子点数相同”的概率;(2)根据所有的基本事件的个数,求所求的“点数之和小于”的基本事件的个数,最后利用概率计算公式求解即可;(3)根据所有的基本事件的个数,求所求的“点数之和等于或大于”的基本事件的个数,最后利用概率计算公式求解即可 试题解析:抛掷两颗骰子,总的事件有个. (1)记“两颗骰子点数相同”为事件,则事件有6个基本事件, ∴ (2)记“点数之和小于7”事件,则事件有15个基本事件, ∴ (3)记“点数之和等于或大于11”为事件,则事件有3个基本事件, ∴. 考点:古典概型. 21、(1);(2);(3)见解析 【解析】(1)函数,所以函数的值域为 (2)若函数在定义域上是减函数,则任取且都有 成立,即,只要即可,由,故, 所以,故的取值范围是; (3)当时,函数在上单调增,无最小值,当时取得最大值;由(2)得当时,在上单调减,无最大值,当时取得最小值; 当时,函数在上单调减,在上单调增,无最大值,当 时取得最小值. 【点睛】利用函数的单调性求值域是求值域的一种重要方法.特别注意当函数含有参数时,而参数又会影响了函数的单调性,从而需要分类讨论求函数的值域

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服