ImageVerifierCode 换一换
格式:PPT , 页数:45 ,大小:1.79MB ,
资源ID:12561962      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12561962.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(复变函数第五章 留数理论及其应用.ppt)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

复变函数第五章 留数理论及其应用.ppt

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第五章,留数理论及其应用,1.,留数的定义,2.,留数定理,3.,留数的计算规则,5.1,留数,(Residue),的奇点,所围成的区域内含有,),(,z,f,C,0,z,一、留数的引入,设,C,为区域,D,内,包含,的任一条正向简单闭曲线,),(,f,dz,z,c,未必为,0,0,z,所围成的区域内解析,在,),(,C,f,=,.,的某去心邻域,:,D,内的,Laurent,展式,:,在,0,(,P49,例,3.3,),0,(,柯西,-,古萨基本定理,),定义,设,z,0,为,f,(,z,),的孤立奇点,

2、f,(,z,),在,z,0,邻域内的洛朗级数中负幂次项,(,z,-,z,0,),1,的系数,c,1,称为,f,(,z,),在,z,0,的,留数,,记作,Res,f,(,z,),z,0,。,由,留数定义,Res,f,(,z,),z,0,=,c,1,(1),综上,,,的系数,-,0,1,),(,-,z,z,展式中负幂项,Laurent,记作,为,f(z),在 的,。,定义,留数,注,二、利用留数求积分,1.,留数定理,设函数,f(,z,),在区域,D,内除有限个孤立奇点,z,1,z,2,.,z,n,外,处处解析,.,C,是,D,内包围诸奇点的一条正向简单闭曲线,则,D,z,1,z,2,z,3,z

3、n,C,1,C,2,C,3,C,n,C,证明,两边同时除以 得,,如图,由复合闭路原理,求沿闭曲线,C,积分,求,C,内各孤立奇点处的留数,.,注,1,(1),如果,为,的,可去奇点,一般规则说明,:,2.,留数的计算规则,成,Laurent,级数求,(2),如果,为,的,本性奇点,展开,则需将,(3),如果,为,的,极点,则有如下计算方法:,1),应用,Laurent,展式,2),求,n,级极点的一般方法,(,求导运算,),1),应用,Laurent,展式,例,5.1,解,如果 为 的 级极点,规则,2,那末,如果 为 的一级极点,那末,规则,1,2),求,n,级极点的一般方法,(当,m,

4、1,时就是,规则,1),规则,3,如果,设,及,在,都解析,,那末,为,的一级极点,且有,解,例,2,例,3,解,思考题,思考题答案,例,2,解,例,3,解,例,4,解,故由留数定理得:,(1),要灵活运用规则及洛朗级数展开来求留,数,不要死套规则。,如,是,f,(,z,),的三级极点,。,-,该方法较规则,2,更简单!,(2),由规则,2,的推导过程知,在使用规则,2,时,可将,m,取得比实际级数高,这可使计算更,简单。,如,三、在无穷远点的留数,注意积分路线取顺时针方向,说明,记作,1.,定义,设函数,在圆环域,内解析,,C,为圆环域内绕原点的任何一条正向简单闭曲线,,p,-,=,C,z

5、z,f,i,d,),(,2,1,.,.,.,.,.,.,.,证,由留数定义有,:,(,绕原点的并将,内部的正向简单闭曲线,),包含在,2.,定理二,如果函数,在扩充复平面内只有有限个,孤立奇点,那末,在所有各奇点,(,包括,点,),的留数的总和必等于零,.,证毕,说明,:,由定理得,(,留数定理,),计算积分,计算无穷远点的留数,.,优点,:,使计算积分进一步得到简化,.,(,避免了计算诸有限点处的留数,),3.,在无穷远点处留数的计算,规则,4,说明,:,定理,5.2,和规则,4,提供了,计算函数沿闭曲线,积分的又一种方法,:,此法在很多情况下此法更为简单,.,现取正向简单闭曲线,C,为半

6、径足够大的,正向圆周,:,于是有,证,内除,在,外无其他奇点,.,证毕,例,5,计算积分,C,为正向圆周,:,函数,在,的外部,除,点外没有,其他奇点,.,解,根据定理,5.2,与规则,4:,与以下解法作比较,:,被积函数,有四个一级极点,都,在圆周,的内部,所以,由规则,3,可见,利用无穷远点的留数更简单,.,例,6,计算积分,C,为正向圆周,:,解,除,被积函数,点外,其他奇点为,由于,与,1,在,C,的内部,则,所以,小结与思考,一概念,-,留数,一定理,-,留数定理(,计算闭路复积分)(,重点,),两方法,-,展开式和规则求留数,三规则,-,求极点处留数,(,难点,),五、小结与思考,

7、本节我们学习了留数的概念、计算以及留数,定理,.,应重点掌握计算留数的一般方法,尤其是极,点处留数的求法,并会应用留数定理计算闭路复,积分,.,5.2,留数在定积分中的应用,其中,注意,:,对 的要求,分母,Q(x,),次数比分子,P(x,),至少高两次,是函数 在,上半平面,内的有限个孤立奇点;,注意,:,对 的要求,分母比分子至少高一次,是函数 在,上半平面,内的有限个孤立奇点;,思想方法,:,封闭路线的积分,.,两个重要工作,:,1),积分区域的转化,2),被积函数的转化,把定积分化为一个复变函数沿某条,注意:其中 是函数 在,单位圆,内的有限个孤立奇点。,形如,当,历经变程,时,的,正方向绕行一周,.,z,沿单位圆周,z,的有理函数,且在,单位圆周上分母不,为零,满足留数定,理的条件,.,包围在单位圆周,内的诸孤立奇点,.,例,5.10,计算积分,分析,因,在实轴上有一级极点,应使封闭路,线不经过奇点,所以可取图示路线,:,解,封闭曲线,C,:,由柯西,-,古萨定理得,:,由,当 充分小时,总有,即,记住以下常用结果:,作 业,P120,2,;,3,;,5,(,1,),

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服