ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:92.85KB ,
资源ID:12040833      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/12040833.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(20160120旋转的回顾与思考.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

20160120旋转的回顾与思考.docx

1、第二十三章 旋转复习教案 福州七中 林淑霞 指导老师 谢振国 一、教学目标   知识技能:了解本单元的知识点及其之间的关系;掌握旋转的概念及性质;掌握中心对称定义及性质,了解利用三种变换进行图案设计.  数学思考:在大量实例的列举过程中,感受旋转及中心对称图形,加深学生对所学知识的认识,在图形运动变化过程中,注重探索结论并注重与已学图形变换的联系.了解数学来源于生活又作用于生活,并了解用运动的思想观察问题,数形结合的思想解决问题.      问题解决:有一定的对图形问题研究过程的认识:即实例引出概念,概念得出性质,性质研究问题,及由性质得出有关作图的方法.感受识图的过程,积累此类

2、问题的解决方法.      情感态度:认识数学学习对发展思维能力的重要性,感受到数学美与自我创造的成就感,激发创造性的应用数学知识的热情.  二、重难点分析   教学重点:掌握本单元知识体系的连贯性,理解各知识点之间的关联,会利用旋转的性质解决实际问题.  本节课要对本单元的知识结构进行梳理,使学生了解本单元的知识体系,以及本单元知识与其他单元知识的联系.  教学难点:旋转概念的理解与性质的灵活应用,基本几何图形的旋转及识图、作图能力,在应用中进行相关的计算与几何证明、旋转与平移,轴对称知识相结合的综合应用.      在解题中运用本单元知识是学习本单元的最终目的,同时在解决具体问

3、题时,结合旋转的性质进行灵活地运用仍是难点,教学中可以演示大量生活实际背景的数学题,进行数学建模,抽象出数学模型,充分体现思考过程,使学生在模仿中尝试,在尝试中探索,在探索中创造. 三、学习者学习特征分析     学生在学完本单元知识后,对某些知识可能还存在一些不同程度的问题.比如,把握不住旋转的性质,在变换过程中抓不住关键点与旋转中心的位置关系,在复杂的图形中易受非关键因素的影响,导致识图、作图能力不强影响后续的分析与思考. 四.教学反思 (一).概念: 1.旋转:如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.

4、 例:(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B、C分别移动到什么 位置? [来源:学_科_网Z_X_X_K] 旋转中心 2 .旋转中心 中心对称图形:图形绕着中心旋转180°后与自身重合称中心对称图形(如:平行四边形、圆等)。 例: ①在线段、锐角、等边三角形、正方形和圆中,是中心对称图形的有__________ ②在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( ) (二).性质 1.旋转的性质

5、[来源:学§科§网] ① 旋转不改变图形的形状和大小(即旋转前后的两个图形全等). ② 任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角). ③ 经过旋转,对应点到旋转中心的距离相等 2.旋转三要点:旋转①中心,②方向,③角度. 例:若两个图形关于某一点成中心对称,那么下列说法: ① 对称点的连线必过对称中心; ② 这两个图形一定全等; ③ 对应线段一定平行且相等; ④ 将一个图形绕对称中心旋转180°必定与另一个图形重合。 [其中正确的是( )。 (A) ①② (B) ①③ (C) ①②③ (D) ①②③④ 2.如图,四边形AB

6、CD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形. (1)旋转中心是哪一点? (2)旋转了多少度? (3)AF的长度是多少? (4)如果连结EF,那么△AEF是怎样的三角形? (三).基本练习 1.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是( ) 2.下面图形中既是轴对称图形又是中心对称图形的是( ) A.直角 B.等边三角形 C.直角梯形 D.两条相交直线 3.在线段,等腰梯形,平行四边形,矩形,正五角星,圆,正方形,等边三角形中,既是轴对称图形,又是中心对

7、称图形的图形有( ) A.3个 B.4个 A.3个 B.4个 C.5个 D.6个 4.下列命题中真命题是( ) A.两个等腰三角形一定全等 B.正多边形的每一个内角的度数随边数增多而减少[来C.菱形既是中心对称图形,又是轴对称图形 D.两直线平行,同旁内角相等 5.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是( )A.60° B.50° C.75° D.55° 6.如图,△ABC是等边三角形。D是B

8、C上一点,△ABD经过旋转后到达△ACE的位置。 ① 旋转中心是哪一点 ② 旋转了多少度? ③ 如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置? (四).应用 1.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点P′(-x,-y) 例.如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形. 1.已知点P(-b,2)与点Q(3,2a)关于原点对称点,则a、b的值分别是______。 2.已知a<0,则点P(-a2,-a+1)关于原点的对称点P1

9、在   象限。 A.-1,3    B.1,-3    C.-1,-3     D. 1,3 3.已知点P(-b,2)与点Q(3,2a)关于原点对称点,则a、b的值分别是______。 4.直线y=x+3上有一点P(3,2m),则P点关于原点的对称点P′为______. 2.对称、平移、旋转及其组合 ①按要求作出简单平面图形变换后的图形. ②灵活运用轴对称、中心对称、平移和旋转的组合进行图案设计. 例.以下图所示的是以四边形ABCD以O点为对称中心所得的中心对称图形 (五).基本练习 1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保

10、持不变. 2.如上右图,是由________关系得到的图形. 3. 如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________. 4.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________. 作图题 (1)作出三角形AOB关于O点的对称图形,如图所示. (2).如图,已知线段CD,作出线段CD关于对称轴L的对称线段C′D′,并说明CD与

11、对称线段C′D′之间有什么关系? (3).如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系? 5;.画出△ABC关于原点O对称的△A1B1C1,并求出点A1,B1,C1的坐标。(8分) 五.作业 半张卷子 六.总结: 学生在学完本单元知识后,对某些知识可能还存在一些不同程度的问题.比如,把握不住旋转的性质,在变换过程中抓不住关键点与旋转中心的位置关系,在复杂的图形中易受非关键因素的影响,导致识图、作图能力不强影响后续的分析与思考. 七.教学反思 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服