ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:367.75KB ,
资源ID:11825062      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11825062.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(立体几何解法.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

立体几何解法.doc

1、立体几何 立体几何中涉及的位置关系主要有线面、面面的平行和垂直有4个判定定理和4个性质定理,这8个定理加上相关的概念和公理,成为立体几何推理的主要依据。 解决立体几何问题的秘密在于:由条件想性质,由结论想判定。口诀的意思是:当条件中涉及某种位置关系时,就想想这样位置关系的性质定理是什么;当结论中要证明某种位置关系时,就想想这种位置关系的判定定理是什么。 补充两点:①当只有一条直线与平面垂直时,往往不用直线与平面垂直的性质定理,而改用直线与平面垂直的定义。 ②在证明题中,要想证明平行或垂直,就要做出相应的直线,这叫做“证啥作啥”。 1、 证明线面平行问题常用的方法: ①  比

2、例法(多为“中位线法”) ②  平行四边形法 ③  转化成“面面平行” 1、 如图,三棱柱中,侧面底面,,, 且,为中点. ⑴证明:平面; ⑵求直线与平面所成角的正弦值; ⑶在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置. 2、 如图,在底面是正方形的四棱锥中,面,交于点,是中点,为上一点. ⑴求证:; ⑵确定点在线段上的位置,使//平面,并说明理由. ⑶当二面角的大小为时,求与底面所成角的正切值. 3

3、 如图,已知直三棱柱,,是棱上动点,是中点 ,,. ⑴求证:平面; ⑵当是棱中点时,求证:∥平面; ⑶在棱上是否存在点,使得二面角的大小是,若存在,求的长,若不存在,请说明理由. 4、 在四棱锥中,侧面底面,,为中点,底面是直角梯形,,=90°,,. ⑴求证:平面; ⑵求证:平面; ⑶设为侧棱上一点,,试确定的值,使得二面角为45°. 5、 如图所示,在边长为的正方形中,点在线段上,且,,作,分别交,于点,,作,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图所

4、示的三棱柱. ⑴求证:平面; ⑵求四棱锥的体积; ⑶求平面与平面所成锐二面角的余弦值. 6、 如图,在四棱锥中,平面,底面为直角梯形,,.为中点,为中点. ⑴求证:; ⑵求二面角的余弦值; ⑶若四棱锥的体积为,求的长. 7、 三棱柱中,侧棱与底面垂直,,, 分别是,的中点. ⑴求证:平面; ⑵求证:平面; ⑶求二面角的余弦值. 8、 如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点. ⑴求证:平面; ⑵求证:平面; ⑶求直线与平面所成角的正弦值.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服