ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:186.51KB ,
资源ID:1156276      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1156276.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高考文科数学复习函数的奇偶性单调性及周期性练习一.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考文科数学复习函数的奇偶性单调性及周期性练习一.doc

1、2014年高考文科数学复习-函数的奇偶性、单调性及周期性练习一1下列函数为偶函数的是()Aysin xByx3CyexDyln 2已知f(x)ax2bx是定义在a1,2a上的偶函数,那么ab 的值是()AB.C.D3已知定义在R上的奇函数f(x),满足f(x4)f(x),则f(8)的值为()A1 B0C1 D24已知f(x)为奇函数,当x(,0)时,f(x)x2,则f(x)0的解集为()A(,2)B(2,)C(2,0)(2,)D(,2)(0,2)5.若函数f(x)是定义在R上的偶函数,在(,0上是减函数,且f(3)0,则使得f(x)0的解集为()A(2,0)(2,)B(,2)(0,2)C(,2

2、)(2,) D(2,0)(0,2)7.设f(x)=ax5+bx3+cx5(a,b,c是常数)且,则f(7)= _. 8、(2013重庆文)已知函数,则()ABCD9、已知偶函数f(x)在区间0,)上单调递增,则满足f(2x1)f()的x的取值范围是( )A(,) B,)C(,) D,)10.设函数f(x)x3cos x1.若f(a)11,则f(a)_.11.已知yf(x)x2是奇函数,且f(1)1.若g(x)f(x)2,则g(1)_.12已知函数f(x)为奇函数,则ab_.13、已知定义在R上的奇函数满足f(x)x22x(x0),若f(3a2)f(2a),则实数a的取值范围是_14.设函数f(

3、x)是定义在R上的周期为2的偶函数,当x0,1时,f(x)x1,则f_.15已知定义在-2,2上的奇函数,f (x)在区间0,2上单调递减,若f (m)+f (m-1)0,实数m的取值范_2014年高考文科数学复习-函数的奇偶性、单调性及周期性练习二1下列函数中,既是奇函数又是减函数的是()Ayx3Bysin xCyxDyx2设f(x)是周期为2的奇函数,当0x1时,f(x)2x(1x),则f()ABC.D.3已知函数f(x)x|x|2x,则下列结论正确的是()Af(x)是偶函数,递增区间是(0,)Bf(x)是偶函数,递减区间是(,1)Cf(x)是奇函数,递减区间是(1,1)Df(x)是奇函数

4、,递增区间是(,0)4已知函数f(x)|xa|xa|(a0),h(x)则f(x),h(x)的奇偶性依次为()A偶函数,奇函数 B奇函数,偶函数C偶函数,偶函数 D奇函数,奇函数5已知函数f(x)为定义在R上的奇函数,当x0时,f(x)2x2xm(m为常数),则f(1)的值为()A3 B1C1 D36若函数f(x)为奇函数,则a()A.B.C.D17定义在R上的函数f(x)满足:f(x)f(x2)13,f(1)2,则f(99)()A13B2C.D.8.设f(x)是奇函数,且在(0,)内是增函数,又f(3)0,则xf(x)0的解集是()Ax|3x3Bx|x3,或0x3Cx|x3Dx|3x0,或0x

5、39、已知f(x)是偶函数,当x0时,f(x)_.10.若函数是定义在R上的偶函数,在上是减函数,且,则使得的x的取值范围是11.已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x时,f(x)log2(3x1),则f(2 011)_.12、已知奇函数满足,当时,则。函数的奇偶性及周期性练习一(教师版)1下列函数为偶函数的是(D)Aysin xByx3CyexDyln 2已知f(x)ax2bx是定义在a1,2a上的偶函数,那么ab 的值是(B)AB.C.D3已知定义在R上的奇函数f(x),满足f(x4)f(x),则f(8)的值为(B)A1 B0C1 D24已知f(x)为奇函数,当x(,

6、0)时,f(x)x2,则f(x)0的解集为()A(,2)B(2,)C(2,0)(2,)D(,2)(0,2)5.若函数f(x)是定义在R上的偶函数,在(,0上是减函数,且f(3)0,则使得f(x)0的解集为(B)A(2,0)(2,)B(,2)(0,2)C(,2)(2,) D(2,0)(0,2)f(x)为偶函数,0.xf(x)0.或又f(2)f(2)0,f(x)在(0,)上为减函数,故x(0,2)或x(,2)7.(2013年重庆(文)已知函数,则(C)ABCD8、若函数f(x)x2|xa|为偶函数,则实数a_.解析:法一:f(x)f(x)对于xR恒成立,|xa|xa|对于xR恒成立,两边平方整理得

7、ax0,对于xR恒成立,故a0.法二:由f(1)f(1),得|a1|a1|,故a0.9.设函数f(x)x3cos x1.若f(a)11,则f(a)_.解析:观察可知,yx3cos x为奇函数,且f(a)a3cos a111,故a3cos a10.则f(a)a3cos a11019.10.已知yf(x)x2是奇函数,且f(1)1.若g(x)f(x)2,则g(1)_.yf(x)x2是奇函数,且x1时,y2,当x1时,y2,即f(1)(1)22,得f(1)3,所以g(1)f(1)21.11已知函数f(x)为奇函数,则ab_.解析:当x0,所以f(x)x2x,f(x)ax2bx,而f(x)f(x),即

8、x2xax2bx,所以a1,b1,故ab0.12.设f(x)=ax5+bx3+cx5(a,b,c是常数)且,则f(7)= _. 13、已知定义在R上的奇函数满足f(x)x22x(x0),若f(3a2)f(2a),则实数a的取值范围是_因为f(x)x22x在0,)上是增函数,又因为f(x)是R上的奇函数,所以函数f(x)是R上的增函数,要使f(3a2)f(2a),只需3a22a,解得3a0时,x0,则h(x)x2x(x2x)h(x),当x0,则h(x)x2x(x2x)h(x)x0时,h(0)0,故h(x)为奇函数5已知函数f(x)为定义在R上的奇函数,当x0时,f(x)2x2xm(m为常数),则

9、f(1)的值为()A3 B1C1 D36若函数f(x)为奇函数,则a()A.B.C.D1解析:选A函数f(x)为定义在R上的奇函数,则f(0)0,即f(0)20m0,解得m1.则f(x)2x2x1,f(1)212113,f(1)f(1)3.7定义在R上的函数f(x)满足:f(x)f(x2)13,f(1)2,则f(99)()A13B2C.D.解析:由f(x)f(x2)13,知f(x2)f(x4)13,所以f(x4)f(x),即f(x)是周期函数,周期为4.所以f(99)f(3424)f(3).答案:C8.设f(x)是奇函数,且在(0,)内是增函数,又f(3)0,则xf(x)0的解集是()Ax|3

10、x3Bx|x3,或0x3Cx|x3Dx|3x0,或0x3解析:选D由xf(x)0,得或而f(3)0,f(3)0,即或所以xf(x)0的解集是x|3x0,或0x39、已知f(x)是偶函数,当x0时,f(x)_.10.若函数是定义在R上的偶函数,在上是减函数,且,则使得的x的取值范围是11.已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且x时,f(x)log2(3x1),则f(2 011)_.解析:f(2 011)f(36701)f(1)f(1)log2(31)2.12、已知奇函数满足,当时,则。分析:设,则,由题意知,因为是奇函数,所以,。设,则,从而。又函数满足,所以,因为,所以。1

11、3.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)g(x)x,则f(1),g(0),g(1)之间的大小关系是_解析:在f(x)g(x)x中,用x替换x,得f(x)g(x)2x,因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以f(x)f(x),g(x)g(x),因此得f(x)g(x)2x.于是解得f(x),g(x),于是f(1),g(0)1,g(1),故f(1)g(0)g(1)14关于yf(x),给出下列五个命题:若f(1x)f(1x),则yf(x)是周期函数;若f(1x)f(1x),则yf(x)为奇函数;若函数yf(x1)的图象关于x1对称,则yf(x)为偶函数

12、;函数yf(1x)与函数yf(1x)的图象关于直线x1对称;若f(1x)f(1x),则yf(x)的图象关于点(1,0)对称填写所有正确命题的序号_解析:由f(1x)f(1x)可知,函数周期为2,正确;由f(1x)f(1x)可知,yf(x)的对称中心为(1,0),错;yf(x1)向左平移1个单位得yf(x),故yf(x)关于y轴对称,正确;两个函数对称时,令1x1x得x0,故应关于y轴对称,错;由f(1x)f(1x)得yf(x)关于x1对称,错,故正确的应是.15、已知函数f(x)是奇函数(1)求实数m的值;(2)若函数f(x)在区间1,a2上单调递增,求实数a的取值范围解:(1)设x0,所以f

13、(x)(x)22(x)x22x.又f(x)为奇函数,所以f(x)f(x),于是x0时,f(x)x22xx2mx,所以m2.(2)要使f(x)在1,a2上单调递增,结合f(x)的图象知所以1a3,故实数a的取值范围是(1,316已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x1对称(1)求证:f(x)是周期为4的周期函数;(2)若f(x)(0x1),求x5,4时,函数f(x)的解析式解:(1)证明:由函数f(x)的图象关于直线x1对称,得f(x1)f(1x),即有f(x)f(x2)又函数f(x)是定义在R上的奇函数,故有f(x)f(x)故f(x2)f(x)从而f(x4)f(x2)f(x),即f(x)是周期为4的周期函数(2)由函数f(x)是定义在R上的奇函数,有f(0)0.x1,0)时,x(0,1,f(x)f(x),又f(0)0,故x1,0时, f(x).x5,4,x41,0,f(x)f(x4).从而,x5,4时,函数f(x).17、已知f(x)是偶函数,且f(x)在0,)上是增函数,如果f(ax1)f(x2)在x上恒成立,求实数a的取值范围解:因为f(x)为偶函数,且在0,)上为增函数,则在(,0上为减函数,由f(ax1)f(x2),则|ax1|x2|,又x,故|x2|2x,即x2ax12x.故x3ax1x,1a1,在上恒成立因为min0,max2,故2a0.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服