ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:508.98KB ,
资源ID:1156256      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1156256.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2020中考数学九年级下册锐角三角函数在实际问题中的应用(含答案).doc)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2020中考数学九年级下册锐角三角函数在实际问题中的应用(含答案).doc

1、2020中考数学 锐角三角函数在实际问题中的应用(含答案)1.如图,小军和小兵要去测量一座古塔的高度,他们在离古塔60米的A处用测角仪测得塔顶的仰角为30,已知测角仪AD=1.5米,则塔CB的高为多少米?参考答案:解:过A作AEDC交BC于点E则AE=CD=60米,则AEB=90,EC=AD=1.5在RtABE中, 即 所以,古塔高度为:米2.如图,小强在家里的楼顶上的点A处,测量建在与小明家楼房同水平线上相邻的电梯楼的高,在点A处看电梯楼顶点B处的仰角为60,看楼底点C的俯角为45,两栋楼之间的距离为30米,则电梯楼的高BC为多少米?参考答案:解:过A作AD地面,交BC于D则在RtABD中,

2、即,在RtACD中,即,楼高BC为: 3.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45,35。已知大桥BC与地面在同一水平面上,其长度为100米,请求出热气球离地面的高度。(结果保留整数,参考数据:,)参考答案:解:过A作ADBC于点D则AD即为热气球的高度,且1=2=45可设AD=BD=x则CD=x+100在RtADC中,即得: 即热气球的高度为米4.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一直线上小红在D处观测旗杆顶部A的仰角为47,观测旗杆底部B的仰角为42已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC

3、的高度(结果保留小数点后一位,参考数据:tan471.07,tan420.90)参考答案:解:根据题意,DE=1.56,EC=21,ACE=90,DEC=90过点D作DFAC,垂足为F则DFC=90,ADF=47,BFD=42可得四边形DECF为矩形DF=EC=21,FC=DE=156在RtDFA中, AF=DFtan4721107=22.47在RtDFB中,BF=DFtan42210.90=18.90于是,AB=AF-BF=22.47-18.90=3.573.6,BC=BF+FC=18.90+1.56=20.4620.55.如图所示,探测出某建筑物废墟下方点C处有生命迹象在废墟一侧面上选两探

4、测点A、B,AB相距2米,探测线与该面的夹角分别是30和45(如图)试确定生命所在点C与探测面的距离(参考数据,)参考答案:解:过C作CDAB于点D,则DBC=45=BCD可设BD=CD=x在RtACD中可得:即:得即,点C与探测面的 距离大约为2.73米。6.如图所示,如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度。小宇同学在A处观测对岸C点,测得CAD45,小英同学在距A处50米远的B处测得CBD30,请你根据这些数据算出河宽。(精确到0.01米,参考数据, ,)参考答案:解:在RtACE中,CAE=45可设CE=EA=x在RtBCE中,即,得 即,河宽约为68

5、.3米7.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角EAD为45,在B点测得D点的仰角CBD为60,求这两座建筑物的高度(结果保留根号)参考答案:解:如图,过A作AFCD于点F,在RtBCD中,DBC=60,BC=30m,CD=BCtan60=m,乙建筑物的高度为m;在RtAFD中,DAF=45,DF=AF=BC=30m,AB=CF=CDDF=m,甲建筑物的高度为m8.如图所示,在某海域,一艘指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45方向上,且BC60海里;指挥船搜索发现,在C处的南偏西60方向上有一艘海监

6、船A,恰好位于B处的正西方向于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:,结果精确到0.1小时)参考答案:解:因为A在B的正西方,延长AB交南北轴于点D,则ABCD于点DBCD45,BDCDBDCD在RtBDC中,cosBCD,BC60海里即cos45,解得CD海里BDCD海里在RtADC中,tanACD即 tan60,解得AD海里ABADBDAB30()海里海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为 2.451.411.041.0小时渔船在B处需要等待1.0小时9.随着人们生活水平的不断

7、提高,旅游已成为人们的一种生活时尚为开发新的旅游项目,我市对某山区进行调查,发现一瀑布为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30,测得瀑布底端B点的俯角是10,AB与水平面垂直又在瀑布下的水平面测得CG27m,GF17.6m(注:C、G、F三点在同一直线上,CFAB于点F)斜坡CD20m,坡角ECD40求瀑布AB的高度(参考数据:1.73,sin400.64,cos400.77,tan400.84,sin100.17,cos100.98,tan100.18)参考答案:解:过点D作DMCE,交CE于点M,作DNAB,交AB于点N,如图所示在RtCMD中,CD20m

8、,DCM40,CMD90,CMCDcos4015.4m,DMCDsin4012.8m,DNMFCMCGGF60m在RtBDN中,BDN10,BND90,DN60m,BNDNtan1010.8m在RtADN中,ADN30,AND90,DN60m,ANDNtan3034.6mABANBN45.4m答:瀑布AB的高度约为45.4米10.如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30,60,求CD的高度(结果保留根号)参考答案:解:作BFCD于点F,设DFx米,在RtDBF中,则,在直角DCE中,DCxCF3x(米),在直角ABF中,则

9、米BFCEAE,即解得:,则CD(米)答:CD的高度是米11.如图,站在高出海平面100m的悬崖C处,俯视海平面上一搜捕鱼船A,并测得其俯角为30,则船与观察者之间的水平距离是多少?船向观察者方向行进了一段距离到达B处,此时测得船的俯角为60,求船航行了多少米?参考答案:解:由题可知CAD=30,CBD=60,CD=100在RtADC中,即, 在RtBDC中,即,船与观察者之间的水平距离为:,船航行了 12.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东

10、60,在B的南偏东30方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(1.7)参考答案:解:作CDAB交AB延长线于D,由已知得:EAC=60,FBC=30,1=30,2=90-30=60,1+3=2,3=30,1=3,AB=BC=100,在RtBDC中,AD=AB+BD=150,在RtACD中,搜救中心应派2号艘救助轮才能尽早赶到C处救援13.一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达

11、C处,求救援的艇的航行速度.(sin370.6,cos370.8,1.732,结果取整数)参考答案:解:辅助线如图所示:BDAD,BECE,CFAF,有题意知,FAB=60,CBE=37,BAD=30,AB=20海里,BD=10海里,在RtABD中,在RtBCE中,CE=BCsin370.610=6海里,EB=BCcos370.810=8海里,EF=AD=17.32海里,FC=EFCE=11.32海里,AF=ED=EB+BD=18海里,在RtAFC中,21.26364海里/小时.答:救援的艇的航行速度大约是64海里/小时.14.今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于

12、国门之外如图,某天我国一艘海监船巡航到港口正西方的处时,发现在的北偏东方向,相距150海里处的点有一可疑船只正沿方向行驶,点在港口的北偏东方向上,海监船向港口发出指令,执法船立即从港口沿方向驶出,在处成功拦截可疑船只,此时D点与点的距离为海里(1)求点到直线的距离;(2)执法船从到航行了多少海里?(结果保留根号)参考答案:解:(1)过点B作交CA的延长线于点H,答:点到直线的距离为75海里。(2) BH=75在中,(海里)答:执法船从到航行了海里。15.为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.

13、该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时AEB=FED),在F处测得旗杆顶A的仰角为39.3,平面镜E的俯角为45,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.30.82,tan84.310.02)参考答案:解:由题意,可得FED=45.在直角DEF中,FDE=90,FED=45,DE=DF=1.8米,米.AEB=FED=45,AEF=180AEBFED=90.在直角AEF中,AEF=90,AFE=39.3+45=84.3,AE=EFtanAFE10.02=18.036(米).在直角ABE中,ABE=90,AEB=45, 故旗杆AB的高度约

14、为18米.16.如图,某数学兴趣小组在活动课上测量学校旗杆的高度。已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的演讲为45;两人相距5米且位于旗杆同侧(点B、D、F在同一直线上)。(1)求小敏到旗杆的距离DF;(结果保留根号)(2)求旗杆EF的高度。参考答案: 解:过C作CPEF于点P,过A作AQEF于点Q,则QP=1.7-0.7=1则在RtECD中可设CD=ED=xEQ=x-1在RtAEQ中,AQ=BD+CD=5+x,即得,小敏到旗杆的距离为17.如图,马路的两边CF、DE互相平行,线段CD为人

15、行横道,马路两侧的A、B两点分别表示车站和超市,CD与AB所在直线互相平行,且都与马路的两边垂直马路宽20米,A,B相距62米,A67,B37(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线ADCB去超市B求他沿折线ADCB到达超市比直线横穿马路多走多少米(参考数据:,)参考答案:【解】(1)如图(第20题图)设CD与AB的距离为x米CDAB,CFDE,CDDE,四边形CDEF是矩形,CFDEx(米),EFCD20(米),又ABCF,ABDE,AE,BF, ABAEEFBF2062,解得,x24(米)即CD与AB的距离约为24米(2)在RtADE中,AD ,同理,BC,(ADDCC

16、B)AB2620406224(米)即沿折线ADCB去超市B比直线横穿马路多走约24米18.如图,一艘游轮在A处测得北偏东45的方向上有一灯塔B游轮以海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:,)参考答案:解:过点C作CMAB,垂足为M,在RtACM中,MAC904545,则MCA45,AMMC,由勾股定理得:AM2MC2AC2(202)2,解得:AMCM40,ECB15,BCF901575,BBCFMAC754530,在RtBCM中,tanBtan30,即,BM40,ABAMBM40404040

17、1.73109(海里),答:A处与灯塔B相距109海里19.如图,轮船从点A处出发,先航行至位于点A的南偏西15且与点A相距100km的点B处,再航行至位于点B的北偏东75且与点B相距200km的点C处。(1)求点C与点A的距离。(保留根号)(2)确定点C相对于点A的方向。参考答案:解:过A作ADBC于点D,由图可知:ABD=60在RtABD中,BD=50, 在RtADC中,由勾股定理可得:锐角DAC=60点C在点A的南偏西7520.如图1,水坝的横截面是梯形ABCD,ABC37,坝顶DC3m,背水坡AD的坡度i(即tanDAB)为1:0.5,坝底AB14m(1)求坝高;(2)如图2,为了提高

18、堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE2DF,EFBF,求DF的长(参考数据:,)参考答案:解:(1)作DMAB于M,CNAN于N由题意:tanDAB2,设AMx,则DM2x,四边形DMNC是矩形,DMCN2x,在RtNBC中,tan37,BNx,x3x14,x3,DM6,答:坝高为6m(2)作FHAB于H设DFy,则AE2y,EH32yy3y,BH142y(3y)11y,由EFHFBH,可得,即,解得y72或72(舍弃),DF27,答:DF的长为(27)m21.如图,线段AB,CD分别表示甲、乙两座建筑物的高。某九年级课外兴趣活动小组未来测量者两座建筑物的高,用自制测角仪在A处测得D点的仰角为,在B处测得D点的仰角为。已知甲乙两座建筑物之间的距离BC=m,请你通过计算,用含有、,m的式子分别表示甲乙两座建筑物的高度参考答案:解:假设过A的水平线交CD于点E,则由题可知:AEDC,AE=BC=m在RtADE中,即 在RtBDC中,即所以,乙建筑物高甲建筑物高:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服