ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:455.16KB ,
资源ID:11224313      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11224313.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(三角不等式.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

三角不等式.doc

1、第23讲 三角不等式 竞赛热点 含有未知数的三角函数的不等式叫做三角不等式。 在高中数学竞赛内容中,涉及三角不等式的问题有三类:一是三角不等式的证明,二是解三角不等式,三是应用三角不等式求最值。 处理三角不等式的问题一方面要有扎实的三角变形能力,另一方面还需要有三角函数的图象和性质的认识。同时,对不等式的有关性质和证明方法要能灵活运用。 解题示范 例1:已知,,求证: 思路分析:本题从三角变形入手不易,不可考虑利用放缩,转化为代数不等式。 证明:因为 所以 又 所以 即 点评:此题应用三角函数中重要的不等式:若,则此结论的应用,将三角不等式转化为代数不等式,叠乘即

2、证得。 例2:当时,求证: 思路分析;利用和差化积公式和变为乘积的形式,再放缩证明。 证明:因为 所以 引申:此证明中利用进行放缩,从证明过程中可以看出,等号当且仅当时成立。 因为在内上凸,所以我们很容易推广此不等式为 特殊地,在中,有成立。 例3:已知,证明: 思路分析:原不等式等价为 ,再考虑利用几何意义构造证明。 证明:因为原不等式等价为 , 即 如图, ① ② ③ , , ··, ①、②、③分别表示图中阴影矩形的面积,而表示单位圆在第一象限的面积。 所以成立。 即 点评:此题巧妙地利用三角线几何意义,构造矩形的面积证明,有较强的

3、技巧性。 例4:已知,求证: 思路分析:所证不等式中涉及三个变量,结合结构特征,考虑一元二次方程构造证明。 证明:当时,原不等式显然成立。 当时,构造一元二次方程 因为, 所以所作方程必有一根,从而 即 点评:三角不等式的证明常通过代数方法去解决。 例5:在中,求 的整数部分。 思路分析:利用三角形内角和的特点考虑。 证明:在中,, 所以··· 由幂平均不等式,则 又当时, 所以, , 故 即S的整数部分为4。 点评:证明过程中利用了幂平均不等式和时,1 ,既考虑了三角特点,又结合了代数不等式知识。 例6:求实数的取值范围,使不等式

4、 ,在恒成立。 思路分析:对题中与关系换元解决。 解:设,由可得 原不等式可化为, 即 因为,所以 即 记,易知在上单调递减。 所以 故 点评:换元之后,将三角不等化为代数不等式解决,既转化了形式,又简化了不等式。 例7:已知,若对于一切实数,都有 ,求证: 思路分析:分析题中结构,考虑引入辅助角方法证明。 证明:若,则结论显然成立。 若, 令, 于是, ① ② 由①+②得, 即 所以对一切都成立。 取, 即有 又 ③ 由①+③得 即 取时,,即 点评:此题在恒成立的不等式中,通过赋值得②、③是关键的技巧。 例8:已知··…·,若对任意一组满足上述条件的,都有,求的最小值。 思路分析:先退到特殊形式考虑,再进一步处理一般形式。 解:当时,; 当时,由得 可证,且时等号成立,带入所以; 当时,得证 事实上,不妨,则, 只需证 ① 因为··, 所以 即 又, , 所以 (1)若,则 所以 (2)若, 即 即 所以 所以 另外,当时, 故 点评:当时,将问题转化为①,从而使问题得到解决。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服