ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:365.91KB ,
资源ID:1120688      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1120688.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【1587****927】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【1587****927】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(中考数学-二次函数的实际应用-典型例题分类.pdf)为本站上传会员【1587****927】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中考数学-二次函数的实际应用-典型例题分类.pdf

1、1二二 次次 函函 数数 与与 实实 际际 问问 题题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题类型一:最大面积问题例一:例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积()与路宽(m)之yx间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积()与它与墙平行的边的长(m)之间的函数关系式?当x为多长时,花园面积最大?yx类型二:利润问题类型二:利润问题例二例二:某商店经营 T 恤衫,已知成批购进时单价是 2.5 元

2、.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是 13.5 元时,销售量是 500 件,而单价每降低 1 元,就可以多售出 200件.请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为 x 元,(0 x13.5)元,那么(1)销售量可以表示为_;(2)销售额可以表示为_;(3)所获利润可以表示为_;(4)当销售单价是_元时,可以获得最大利润,最大利润是_2变式训练 2.某商品现在的售价为每件 60 元,每星期可卖出 300 件,市场调查反映:每涨价 1 元,每星期少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,已知商品的进价为每件 40 元,如何定价才能使

3、利润最大?变式训练 3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润 y(万元)与销售时间 x(月)之间的关系(即前 x 个月的利润之和 y 与 x 之间的关系)(1)根据图上信息,求累积利润 y(万元)与销售时间 x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到 30 万元?(3)求第 8 个月公司所获利润是多少万元?340030060 70y(件)x(元)变式训练 4.某服装公司试销一种成本为每件 50 元的 T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件 70 元,试销中销售量(

4、件)与销售单价(元)的关系可以近似的看作一次函数yx(如图)(1)求与之间的函数关系式;yx(2)设公司获得的总利润(总利润总销售额总成本)为 P 元,求 P 与 x 之间的函数关系式,并写出自变量 x 的取值范围;根据题意判断:当 x 取何值时,P 的值最大?最大值是多少?类型三类型三:实际抛物线问题实际抛物线问题例三:例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图 10 所示。(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为 y 轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高 4.5m,此车能否通过隧道?并说

5、明理由。4变式练习 3:如图是抛物线型的拱桥,已知水位在 AB 位置时,水面宽米,水位上升 3 米就64达到警戒水位线 CD,这时水面宽米,若洪水到来时,水位以每34小时 0.25 米的速度上升,求水过警戒线后几小时淹到拱桥顶?变式练习 4:如图,某大学的校门是一抛物线形状的水泥建筑物,大门的地面高度为 8 米,两侧距地面 4 米高处各有一个挂校名的横匾用的铁环,两铁环的水平距离为 6 米,则校门的高度为 。(精确到 0.1 米)xy例 2 图 DCBAO6 米 4米 8 米 BAO 第 3 题图 5变式:1 如图,排球运动员站在点 O 处练习发球,将球从 O 点正上方 2m 的 A 处发出,

6、把球看成点,其运行的高度 y(m)与运行的水平距离 x(m)满足关系式 y=a(x-6)2+h.已知球网与 O 点的水平距离为 9m,高度为 2.43m,球场的边界距 O 点的水平距离为 18m。(1)当 h=2.6 时,求 y 与 x 的关系式(不要求写出自变量 x 的取值范围)(2)当 h=2.6 时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求 h 的取值范围。6课后练习:一,利润问题:1某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫每降价

7、1 元,商场平均每天可多售出 2 件(1)若商场平均每天要盈利 1200 元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?二,面积问题:2,如下图,在一个直角三角形的内部作一个长方形 ABCD,其中 AB 和 AD 分别在两直角边上(1)设长方形的一边 ABx m,那么 AD 边的长度如何表示?(2)设长方形的面积为 y m2,当 x 取何值时,y 的值最大?最大值是多少?73.有一个抛物线形拱桥,其最大高度为 16m,跨度为 40m,现把它的示意图放在平面直角坐标系中,如图该抛物线的解析式为 。4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 y(m)与水平距离 x(m)之间的关系为y(x4)23,由此可知铅球推出的距离是_m.1125、如图,一小孩将一只皮球从 A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处 A 距地面的距离 OA 为 1 m,球路的最高点 B(8,9),则这个二次函数的表达式为_,小孩将球抛出了约_米(精确到 0.1 m)x y A B O8 (第 5 题)6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4 m,跨度为 10 m如图所示,把它的图形放在直角坐标系中(1)求这条抛物线所对应的函数关系式;(2)如图,在对称轴右边 1 m 处,桥洞离水面的高是多少?

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服