ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:949.10KB ,
资源ID:11183714      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11183714.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2018高三理科第一轮复习《空间向量》.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2018高三理科第一轮复习《空间向量》.doc

1、2018年高三理科第一轮复习《空间向量》 班级: 姓名: 号数: 成绩: 空间基底 空间任何三个不共面的向量都可做空间的一个基底。 共线定理 (共线存在唯一实数,。 共面定理 与、(不共线)共面存在实数对,使. 基本定理 不共面,空间任意向量存在唯一的,使 方向向量 所在直线与已知直线平行或者重合的非零向量叫做直线的方向向量。 法向量 所在直线与已知平面垂直的非零向量叫做平面的法向量。 加法 减法 ; 数乘 数量积 ; 垂直 平行 模,

2、坐标 ; 终点坐标起点坐标 夹角 距离 分类 示意图 所需条件 证明原理 线线 平行 (1)直线m方向向量; (2)直线n方向向量 ∥ ∥ 线面 平行 (1)直线m方向向量; (2)平面的法向量 直线∥平面 面面 平行 (1)平面的法向量 (2)平面的法向量 ∥ 平面∥平面 线线垂直 (1)直线m方向向量; (2)直线n方向向量 ⊥ 线面 垂直 (1)直线m方向向量; (2)平面的法向量 ∥ 直线⊥平面 (1)直线m方向向量; (2)平面内两相交直线的方向向量, =0⊥AB

3、 =0⊥CD ⊥ AB,CD且ABCD=P 面面 垂直 (1)平面的法向量 (2)平面的法向量 平面⊥平面 分类 示意图 所需条件 证明原理 两异面直 线所成角 (0,】 (1)直线m方向向量 (2)直线n方向向量 简化: 线面角 【0,】 θ (1)直线OA的方向 向量; (2)平面的法向量 简化:sin= 二面角 【0,】 同进同出为互补 (1)平面的法向量 (2)平面的法向量 (1)二面角平面角是锐角 余弦就取正值 (2)二面角平面角是钝角 余弦就取负值 一进一出为相等

4、 两异面直线间的距离 (1)直线a和直线b的公垂线的方向向量;(2)a上任意一点A,b上任意一点B,构成向量, 则 点面距离 点 面 距 离 点A到平面的距离 (1)点A和平面内任意一点B构成一个向量; (2)平面的法向量, 则 【巩固练习题】 1、已知向量a=(3,5,-1),b=(2,2,3),c=(4,-1,-3),则向量2a-3b+4c的坐标为( ) A、(16,0,-23) B、(28,0,-23) C、(16,-4,-1) D、(0,0,9) 2、是坐标原点,设,若,则点的坐标应为( 

5、 ) A、 B、 C、 D、 3、点P(1,2,3)关于OZ轴的对称点的坐标为( ) A、(-1, -2, 3) B、(1, 2, -3) C、(-1, -2, -3) D、(-1, 2, -3) 4、下列各组向量中不平行的是( ) A、 B、 C、 D、 5、已知=(2,4,5),=(3,x,y),若∥,则(  ) A、x=6,y=15 B、x=3,y= C、x=3,y=15 D、x=6,y= 6、已知向量,,,则与的值分别为( ). A、 B、 C、 D、 7、已知向量,,且与互

6、相垂直,则k=( ) A、1 B、 C、 D、 8、已知向量=(2,4,x),=(2,y,2),若||=6,⊥,则x+y的值是(  ) A、-3或1 B、3或-1  C、-3  D、1 9、已知A(-1,-2,6),B(1,2,-6),O为坐标原点,则向量的夹角( )A、 B、 C、0 D、 10、若向量(1,0,z)与向量(2,1,0)的夹角的余弦值为,则z等于( ) A、0 B、1 C、-1 D、2 11、若向量,且与的夹角余弦值为,则等于( ) A、 B、 C、或 D、或

7、12、在空间直角坐标系中,已知,,则,两点间的距离是( ) A、 B、 C、 D、 13、,则实数a的值为( ) A、3或5 B、-3或-5 C、3或-5 D、-3或5 14、已知,,则的最小值是( ) A、 B、 C、 D、 15、如图,空间四边形中,,,, 点在线段上,且,点为的中点, 则( ) A. B. C. D. 16、空间中,与向量同向共线的单位向量为( ) A、 B、或 C、 D、或 17、若平面、的法向量分别为,则 ( ) A

8、 B、 C、、 相交但不垂直 D、以上均不正确 18、若直线的方向向量为,平面的法向量为,则能使//的是( ) A、=,= B、=,= C、=,= D、=,= 19、如图,P是正方形ABCD外一点,PA平面ABCD,PA=AB=2,且E、F分别是AB、PC的中点. (1)求证:EF//平面PAD; (2)求证:EF平面PCD; (3)求:直线BD与平面EFC所成角的大小. 20、如图,圆O的直径AB=5,C是圆上异于A、B的一点,BC=3, PA平面ABC,AEPC于E,且

9、PA=2. (1) 求证:AE平面PBC; (2) 求:点A到平面PBC的距离. 2018高三理科第一轮复习《空间向量》 1、A 【解析】 2、B 【解析】根据题意,设点B(x,y,z),由于, 且,故可知点的坐标应为 3、A 【解析】空间点P关于OZ轴的对称点的竖坐标不变,横坐标,纵坐标互为相反数 4、D 【解析】设=λ,又=(0,4,-3),则=(0,4λ,-3λ), =(4,-5,0),=(-4,4λ+5,-3λ).由·=0, 得λ=-,∴=(-4,,). ∴||=5. 5、D 【解析

10、因为∥,所以,所以x=6,y=. 6、A【解析】向量,, 解得为与的值分别为 7、D 【解析】因为与互相垂直,所以, 所以. 8、A 【解析】 则故选A 9、A 【解析】因为A(-1,-2,6),B(1,2,-6),O为坐标原点, 则向量,因此选A 10、A 【解析】因为向量(1,0,z)与向量(2,1,0)的夹角的余弦值为, 11、C 【解析】由已知得:, ,所以解得等于或 12、A 【解析】∵A,B两点的坐标分别是A(2,3,5),B(3,1,4), ∴|AB|=。故选A. 13、A 【解析】依题意可得,,则,解得或,故选A 14、C

11、解析】解:因为,, 则 则利用二次函数的性质得到最小值为,选C 15、B 【解析】因为空间四边形OABC如图,,,, 点M在线段OA上,且OM=2MA,N为BC的中点, 所以=.所以=.故选B. 16、C 【解析】依题意可设,其中,由, 可得,解得(舍去)或,所以 . 17、A 【解析】 则,所以.选 A 18、D 【解析】D选项中,,故,因此可得// 19、(1)取PD中点M,连结AM,FM,由FM//CD,FM=CD,得FM//AE,FM=AE, 四边形AEFM是平行四边形 EF//AM,又AM面PAD,EF//面PAD (2)PA面ABCD PAC

12、D,又ADCD CD面PAD AMCD 又PA=AB=2 AMPD AM面PCD EF面PCD (3)过点D作DNPC交于点N,设BD与EC交于点Q,连结QN 由(2)知DQN为所求角 DN=,DQ= RtDNQ中,sin DQN== DQN= 20、(1)证明:圆O的直径AB=5且BC=3 BCAC且AC=4 又PA面ABC BCPA BC面PAC AEBC, 又 AEPC AE面PBC (2)解:由(1)知,AE为所求距离,在RtPAC中,AC=4,PA=2,PC=2 由等面积得 PAAC=PCAE AE= 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服