ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:420.50KB ,
资源ID:11149605      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11149605.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(全国硕士研究报告生入学统一考试线性代数复习.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全国硕士研究报告生入学统一考试线性代数复习.doc

1、 全国硕士研究报告生入学统一考试线性代数复习 12 2020年4月19日 文档仅供参考 考研数学中,线性代数占五个考题,2 个选择题 1 个填空题 2 个解答题:分值为34分,平均用时为40分钟左右,以下为考研数学中出现过的题型: 第一章行列式 题型1求矩阵的行列式<十<2), ;一<5), ;一<5), ;一<5), ) 题型2判断矩阵的行列式是否为零<二<4),1999) 第二章矩阵 题型1解矩阵方程或求矩阵中的参数<十, ;一<4), ) 题型2求矩阵的n次幂<十一<3), ) 题型3初等矩阵与初等变换的关系的判定<二<

2、11), ;二<12), ) 题型4矩阵关系的判定<二<12), ) 题型5矩阵的秩(二(15>, > 第三章向量 题型1向量组线性相关性的判定或证明<十一,1998;二<4), ;十一<2), ;二<4), ;二<12), ;二<11), ;二<11), ;一(7>, ) 题型2根据向量的线性相关性判断空间位置关系或逆问题<二<4), ) 第四章线性方程组 题型1齐次线性方程组基础解系的求解或判定<九, ) 题型2求线性方程组的通解<十二,1998;九, ;三<20<Ⅲ)), ) 题型3讨论含参数的线性方程组的解的情况,如果方程组 有解时求出通解<三<20), ;三<2

3、1), ;三(21>, ) 题型4根据含参数的方程组的解的情况,反求参数或其它<一<4), ;三<20), ) 题型5两个线性方程组的解的情况和它们的系数矩阵的关系的判定<一<5), ) 题型6直线的方程和位置关系的判定<十, ) 第五章矩阵的特征值和特征向量 题型1求矩阵的特征值或特征向量<一<4),1999;十 一<2), ;九, ;三<21<Ⅰ)), ;三(22>, ) 题型2已知含参数矩阵的特征向量或特征值或特征方程的情况,求参数<三<21), ) 题型3已知伴随矩阵的特征值或特征向量,求矩阵的特征 值或参数或逆问题<一<4),1998;十,1999) 题型4将矩阵

4、对角化或判断矩阵是否可对角化<三<21), ;三<21<Ⅱ)), ) 题型5矩阵相似的判定或证明或求一个矩阵的相似矩阵<二<4), ;十<1), ) 题型6矩阵相似和特征多项式的关系的证明或判定<十, ) 第六章二次型 题型1化实二次型为标准二次型或求相应的正交变换<三<20<Ⅱ)), ) 题型2已知一含参数的二次型化为标准形的正交变换,反求参数或正交矩阵<十,1998;一<4), ) 题型3已知二次型的秩,求二次型中的参数和二次型所对应矩阵的表示式<三<20<Ⅰ)), ) 题型4矩阵关系合同的判定或证明<二<4), ;一(8>, ) 题型5矩阵正定的证明<十一,1999

5、 全国硕士研究生入学统一考试数学一 <5)设为阶非零矩阵,为阶单位矩阵. 若,则< ) 不可逆,不可逆. 不可逆,可逆. 可逆,可逆. 可逆,不可逆. <6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图,则的正特征值个数为< ) 0. 1. 2. 3. <13)设为2阶矩阵,为线性无关的2维列向量,,则的非零特征值为. . (20><本题满分11分) ,是三维列向量,为的转置,为的转置 <1)证;<2)若线性相关,则. <21)<本题满分11分) 设矩阵,现矩阵满足方程,其中,, <

6、1)求证 <2)为何值,方程组有唯一解,求 <3)为何值,方程组有无穷多解,求通解 全国硕士研究生入学统一考试数学一 (7> 设向量组线性无关,则下列向量组线性相关的是 (A> . (B> . (C> . (D> .【】 (8> 设矩阵, ,则A与B (A>合同, 且相似. (B> 合同, 但不相似 . (C>不合同, 但相似. (D> 既不合同, 又不相似.【】 (15> 设矩阵, 则的秩为___________. (21> (本题满分11分> 设线性方程组 ① 与方程 ② 有公共解,求a的值及所有公共解

7、. (22> (本题满分11分> 设3阶对称矩阵A的特征值是A的属于的一个特征向量,记其中为3阶单位矩阵. (I> 验证是矩阵B的特征向量,并求B的全部特征值与特征向量. (II> 求矩阵B. 全国硕士研究生入学统一考试数学一 <5)设矩阵,为2阶单位矩阵,矩阵满足,则 <11)设均为维列向量,是矩阵,下列选项正确的是【 】

8、1列的-1倍加到第2列得,记,则【 】 求A的特征值与特征向量 (Ⅱ>求正交矩阵Q和对角矩阵A,使得. 全国硕士研究生入学统一考试数学一 <5)设均为3维列向量,记矩阵 ,, 如果,那么. <11)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是[ ] (A> . (B

9、> . (C> . (D>. <12)设A为n<)阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则[ ] (A>交换的第1列与第2列得. (B> 交换的第1行与第2行得. (C> 交换的第1列与第2列得. (D> 交换的第1行与第2行得. <20)<本题满分9分) 已知二次型的秩为2.

10、 求线性方程组Ax=0的通解. 全国硕士研究生入学统一考试数学一 <5)设矩阵,矩阵B满足,其中为A的伴随矩阵,E是单位矩阵,则 <11)设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C, 则满足AQ=C的可逆矩阵Q为[ ] (A> . (B> . (C> . (D> <12)设A,B为满足AB=O的任意两个非零矩阵,则必有 [ ] (A> A的列向量组线性相关,B的行向量组线性相关. (B> A的列向量组线性相关,B的列向量组线性相关. (C> A的行向量组线性相关,B的行

11、向量组线性相关. (D> A的行向量组线性相关,B的列向量组线性相关. <20)<本题满分9分) 设有齐次线性方程组 试问a取何值时,该方程组有非零解,并求出其通解. <21)<本题满分9分) 设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化. 全国硕士研究生入学统一考试数学一 <4)从的基到基的过渡矩阵为 . <4)设向量组I:可由向量组II:线性表示,则[ ] (A> 当时,向量组II必线性相关. (B> 当时,向量组II必线性相关. (C> 当时,向量组I必

12、线性相关. (D> 当时,向量组I必线性相关. <5)设有齐次线性方程组Ax=0和Bx=0, 其中A,B均为矩阵,现有4个命题: ① 若Ax=0的解均是Bx=0的解,则秩(A>秩(B>; ② 若秩(A>秩(B>,则Ax=0的解均是Bx=0的解; ③ 若Ax=0与Bx=0同解,则秩(A>=秩(B>; ④ 若秩(A>=秩(B>, 则Ax=0与Bx=0同解. 以上命题中正确的是 [ ] (A> ①②. (B> ①③. (C> ②④. (D> ③④. 九 、<本题满分10分) 设矩阵,,,求B+2E的特征值与特征向量,其中为A的伴随矩阵,E为3阶单位矩阵. 十 、<本题满分8分) 已知平面上三条不同直线的方程分别为 , , . 试证这三条直线交于一点的充分必要条件为

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服