ImageVerifierCode 换一换
格式:PPTX , 页数:80 ,大小:1.31MB ,
资源ID:11044539      下载积分:18 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/11044539.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(人教七年级数学上册整式的加减.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教七年级数学上册整式的加减.pptx

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,0,2.2整式的加減,整式的加減,知识回忆,(其中不含字母的项叫做常数项),次数:多项式中次数最高项的次数,.,项:式中的每个单项式叫多项式的项,.,次数:所有字母的指数和,系数:数字因数,单项式,多项式,整式,學习目的,1.懂得同类项的概念,會识别同类项.,2.掌握合并同类项的法则,并能精确合并同类项.,3.能在合并同类项的基础上進行化简、求值运算.,課堂导入,假如有壹罐硬币(分别為壹角、五角、壹元的),你會怎样去数呢?,知识點1,新知探究,8,n,5,n,3,ab,2,-,ab,2,6,xy,-,3,xy,

2、7,a,2,b,2,a,2,b,观测下列各组單项式有什么特點?,1.所含字母相似.,2.相似字母的指数也相似.,知识點1,新知探究,所含字母相似,并且相似字母的指数也相似的项叫做同类项.,几种常数项也是同类项.,(1)是不是同类项有“两個無关”:与系数無关;与字母的排列次序無关,如3mn与-nm是同类项;,(2)同类项都是單项式.,知识點1,新知探究,抓住“两個相似”:壹是所含的字母要完全相似,二是相似字母的指数要相似,這两個条件缺壹不可.,同类项的鉴别措施:,跟踪训练,新知探究,本題源于教材幫,下列各组單项式:y与y2;-a2b3与2a2b3;2x2y与5yx2;,-2 019与0.其中

3、是同类项的有(),A.4组B.3组C.2组D.1组,B,知识點2,新知探究,周末,小明壹家要外出游玩,父亲、媽媽和小明各自选了他們要吃的東西:,买的時候,小明怎么說?,_個面包_個苹果_個草莓_瓶饮料,4,2個面包+1個面包+1個面包=個面包,2個草莓+3個草莓+3個草莓=個草莓,4,8,面包,苹果,草莓,饮料,爸爸,2,1,2,1,妈妈,1,1,3,1,小明,1,1,3,1,3,8,3,知识點2,新知探究,合并同类项的法则:,合并同类项後,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.,把多项式中的同类项合并成壹项,叫做合并同类项.,3,ab,+5,ab,=8,ab,相加,

4、不变,知识點2,新知探究,合并同类项的壹般环节:,壹找:找出同类项,當项数较多時,壹般在同类项的下面做相似的標识;,二移:运用加法互换律、結合律将多项式中的同类项結合;,三合:运用合并同类项法则,合并同类项;,四排:合并後的成果按某壹种字母的降幂(或升幂)排列.,知识點2,新知探究,1.合并同类项時,只能把同类项合并成壹项,不是同类项的不能合并,不能合并的项,在每壹步运算中都要写出,不能遗漏.,2.所有的常数项都是同类项,合并時把它們結合在壹起,运用有理数的运算法则進行合并.,3.若两個同类项的系数互為相反数,则合并同类项的成果為0.,知识點2,新知探究,活學巧记,合并同类项,,法则不能忘,,

5、只求系数和,,字母、指数不变样.,知识點2,新知探究,(,2),3,x,2,y,2,x,2,y,3,xy,2,2,xy,2,=(,3,2),x,2,y,(3,2),xy,2,=,x,2,y,xy,2,.,知识點2,新知探究,解:,(3)4,a,2,+3,b,2,+2,ab,-4,a,2,-4,b,2,=,(4,a,2,-,4,a,2,)+(3,b,2,-,4,b,2,)+,2,ab,=(4,-,4),a,2,+(3,-,4),b,2,+2,a,b,=,-,b,2,+2,ab,.,知识點2,新知探究,合并同类项時要注意“壹相加,两不变”,“壹相加”是指各同类项的系数相加;“两不变”是指字母连同它

6、的指数不变.,知识點2,新知探究,分析:在求多项式的值時,可以先将多项式中的同类项合并,然後再求值,這样做往往可以简化计算.,知识點2,新知探究,知识點2,新知探究,解:,跟踪训练,新知探究,计算:,xy,2,-5,y,3,-2,xy,2,+5,y,3,.,解:,xy,2,-5,y,3,-2,xy,2,+5,y,3,=(,xy,2,-2,xy,2,)+(-5,y,3,+5,y,3,),=(1-2),xy,2,+(-5+5),y,3,=-,xy,2,.,随堂练习,1,C,随堂练习,2,计算3x2-x2的成果是(),A.2B.2x2C.2xD.4x2,B,随堂练习,3,水库中水位第壹天持续下降了a

7、小時,每小時平均下降2 cm;第二天持续上升了a小時,每小時平均上升0.5 cm,這两天水位總的变化状况怎样?,解:把下降的水位变化量记為负,上升的水位变化量记為正.第壹天水位的变化量是-2a cm,第二天水位的变化量是0.5a cm.,两天水位的總变化量(單位:cm)是,-2a+0.5a=(-2+0.5)a=-1.5a(cm).,這两天水位總的变化状况為下降了1.5a cm.,課堂小結,同 类 项,合并同类项,法则,(,1,)字母相同;,(,1,)系数相加;,(,2,)字母连同它的指数不变,.,环节,壹找、二移、三合、四排,(壹加两不变),两無关,两相似,(2)相似字母的指数相似.,拓展提高

8、1,16,拓展提高,2,合并同类项:,3,a,2,b,-2,ab,+2+2,ab,-,a,2,b,-5.,解:,3,a,2,b,-2,ab,+2+2,ab,-,a,2,b,-5,=(3,a,2,b,-,a,2,b,)+(-2,ab,+2,ab,)+2-5,=2,a,2,b,-3.,2.2整式的加減,整式的加減,知识回忆,壹找:找出同类项,當项数较多時,壹般在同类项的下面做相似的標识;,二移:运用加法互换律、結合律将多项式中的同类项結合;,三合:运用合并同类项法则,合并同类项;,四排:合并後的成果按某壹种字母的降幂(或升幂)排列.,合并同类项的壹般环节:,學习目的,1.,能运用运算律探究去括号

9、法则,.,2.會运用去括号法则将整式化简.,課堂导入,請同學們观测下面的两個式子,你們懂得该怎样化简吗?,100t+120(t-0.5),100t-120(t-0.5),知识點1,新知探究,我們懂得,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别為:,100t+120(t-0.5)=100t+120t-60,100t-120(t-0.5)=100t-120t+60,比较上面两個式子,你能发現去括号時符号变化的规律吗?,知识點1,新知探究,去括号法则,1.假如括号外的因数是正数,去括号後原括号内各项的符号与本来的符号相似;,2.假如括号外的因数是负数,去括号後原括号内各项的符号与

10、本来的符号相反,知识點1,新知探究,1.去括号時,要将括号连同它前面的符号壹起去掉.,2.若括号前是“-”号,去括号時,括号内的各项都要变号,不能只变化括号内第壹项或前几项的符号.,3.當括号前的因数不是1時,要运用分派律将括号外的因数与括号内的每壹项都相乘去掉括号,不要漏乘括号内的任何壹项.,知识點1,新知探究,活學巧记,去掉“正括号”,,各项不变号;,去掉“负括号”,,各项都变号.,知识點1,新知探究,比较,+(,x,-3),与,-(,x,-3),的区别,.,+(,x,-3),与,-(,x,-3),可以分别看作,1,与,-1,分别乘,(,x,-3).,知识點1,新知探究,例,化简下列各式:

11、8,a,+2,b,+(5,a,-,b,),;,(,2)(5,a,-3,b,)-3(,a,2,-2,b,),;,(,3)(2,x,2,x,),4,x,2,(3,x,2,x,),解:,(1),原式,=,8,a,+2,b,+5,a,-,b,=,13,a,+,b,.,(2),原式,=,(5,a,-3,b,)-(3,a,2,-6,b,),=5,a,-3,b,-3,a,2,+,6,b,=-,3,a,2,+5,a,+3,b,.,知识點1,新知探究,解:,(3),原式,=2,x,2,x,(4,x,2,3,x,2,x,),=,2,x,2,x,(,x,2,x,),=,2,x,2,x,x,2,x,=,x,2,例,

12、化简下列各式:,8,a,+2,b,+(5,a,-,b,),;,(,2)(5,a,-3,b,)-3(,a,2,-2,b,),;,(,3)(2,x,2,x,),4,x,2,(3,x,2,x,),知识點1,新知探究,去多重括号的措施,去多重括号時,壹般由内向外,即先去小括号,再去中括号,最终去大括号;也可由外向内,即先去大括号,再去中括号,最终去小括号,且去大括号時,要将中括号當作壹种整体,去中括号時,要将小括号當作壹种整体.,知识點1,新知探究,例 两船從同壹港口出发反向而行,甲船顺水,乙船逆水,两船在静水中速度都是50仟米/時,水流速度是a仟米/時.,問:(1)2小時後两船相距多遠?,(2)2小

13、時後甲船比乙船多航行多少仟米?,解:顺水速度=船速+水速=(50+a)km/h,,逆水速度=船速-水速=(50-a)km/h.,(1)2小時後两船相距(單位:km):,2(50+a)+2(50-a)=100+2a+100-2a=200(km).,知识點1,新知探究,例 两船從同壹港口出发反向而行,甲船顺水,乙船逆水,两船在静水中速度都是50仟米/時,水流速度是a仟米/時.,問:(1)2小時後两船相距多遠?,(2)2小時後甲船比乙船多航行多少仟米?,解:顺水速度=船速+水速=(50+a)km/h,,逆水速度=船速-水速=(50-a)km/h.,(2)2小時後甲船比乙船多航行(單位:km):,2(

14、50+a)-2(50-a)=100+2a-100+2a=4a(km).,解:,(1)2(0.5-2,x,),=,20.5-22,x,=,1-4,x,.,随堂练习,1,随堂练习,2,a,+,b,長方形的周長為4a,壹边長為(a-b),则另壹边長為 .,課堂小結,去括号法则,因数是,正数,符号相似,因数是,负数,符号,相反,拓展提高,1,化简:,(1)3(,a,2,4,a,3),5(5,a,2,a,2),;,(2)3(,x,2,5,xy,),4(,x,2,2,xy,y,2,),5(,y,2,3,xy,).,解:,(1),原式,=3,a,2,12,a,9,25,a,2,5,a,10,=,22,a,2

15、7,a,1,;,(2),原式,=,3,x,2,1,5,xy,4,x,2,8,xy,4,y,2,5,y,2,+15,xy,=,x,2,8,xy,y,2,.,2.2整式的加減,整式的加減,知识回忆,合并同类项的法则:,合并同类项後,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.,去括号法则:,1.假如括号外的因数是正数,去括号後原括号内各项的符号与本来的符号相似;,2.假如括号外的因数是负数,去括号後原括号内各项的符号与本来的符号相反,學习目的,能纯熟進行整式的加減运算.,課堂导入,(10,a,+,b,)+(10,b,+,a,)=10,a,+,b,+10,b,+,a,=11,a

16、11,b,=11(,a,+,b,),假如用a,b分别表达壹种两位数的拾位数字和個位数字,那么這個两位数可以表达為 .,互换這個两位数的拾位数字和個位数字,得到的数是 .,将這两個数相加得 .,10,a,+,b,10,b,+,a,結论:這些和都是11的倍数.,任意写壹种两位数,互换它的拾位数字与個位数字,又得到壹种数,两個数相加反复几次看看,谁能先发現這些和有什么规律?對于任意壹种两位数都成立吗?,知识點1,新知探究,例,计算,:,(1),(2,x,3,y,)+(5,x,+4,y,),;,(2)(8,a,7,b,),(4,a,5,b,).,分析:第(1)題是计算多项式2x 3y和5x+4y的

17、和;,第(2)題是计算多项式8a7b和4a5b的差.,解:,(1)(2,x,3,y,)+(5,x,+4,y,),=2,x,3,y,+5,x,+4,y,=7,x,+,y,;,(2)(8,a,7,b,),(4,a,5,b,),=8,a,7,b,4,a,+5,b,=,4,a,2,b.,知识點1,新知探究,整式加減的运算法则:,壹般地,几种整式相加減,假如有括号就先去括号,然後再合并同类项.,(1)整式加減的成果要最简:不能有同类项;含字母项的系数不能出現带分数,带分数要化成假分数;壹般不含括号.,(2)整式加減的成果假如是多项式,壹般按照某壹字母的升幂或降幂排列.,知识點1,新知探究,活學巧记,整式

18、進行加和減,,实质就是在化简,,先去括号再合并,,化到最简才算完.,知识點1,新知探究,例,知识點1,新知探究,整式的化简求值以整式的加減运算為基础,详细环节如下:,壹化:运用整式加減的运算法则将整式化简;,二代:把已知字母或某個整式的值代入化简後的式子;,三计算:根据有理数的运算法则進行计算.,跟踪训练,新知探究,(2)5,a,2,-,a,2,+(5,a,2,-2,a,),=5,a,2,-(,a,2,+5,a,2,-2,a,),=5,a,2,-(6,a,2,-2,a,),=5,a,2,-6,a,2,+2,a,=-a,2,+2,a,.,随堂练习,1,已知多项式2x2-x3+x与另壹种多项式的和

19、是x3+3x2-2x,求另壹种多项式.,解:由題意,得x3+3x2-2x-(2x2 x3+x),=x3+3x2-2x-2x2+x3-x,=2x3+x2-3x.,因此另壹种多项式為2x3+x2-3x.,随堂练习,2,已知,A,=,x,2,-2,xy,,,B,=,y,2,+3,xy,,求,2,A,-3,B,的值,.,解:,2,A,-3,B,=2(,x,2,-2,xy,)-3(,y,2,+3,xy,),=2,x,2,-4,xy,-3,y,2,-9,xy,=,2,x,2,-13,xy,-3,y,2,.,A,,,B,表示的多项式分别是一个整体,代入,2,A,-3,B,时需要加括号,.,随堂练习,3,課堂

20、小結,整式加減的环节,壹化:运用整式加減的运算法则将整式化简;,二代:把已知字母或某個整式的值代入化简後的式子;,三计算:根据有理数的运算法则進行计算.,拓展提高,1,已知,xy,=-2,,,x,+,y,=3,,求,(3,xy,+10,y,)+5,x,-(2,xy,+2,y,-3,x,),的值,.,解:,(3,xy,+10,y,)+5,x,-(2,xy,+2,y,-3,x,),=3,xy,+10,y,+(5,x,-2,xy,-2,y,+3,x,),=3,xy,+10,y,+5,x,-2,xy,-2,y,+3,x,=8,x,+8,y,+,xy,=8(,x,+,y,)+,xy.,把,xy,=-2,

21、x,+,y,=3,代入,,原式,=83+(-2)=24-2=22.,拓展提高,2,若(x2+ax-2y+7)-(bx2-2x+9y-1)的值与字母x的取值無关,求a,b的值.,解:(x2+ax-2y+7)-(bx2-2x+9y-1),=x2+ax-2y+7-bx2+2x-9y+1,=(1-b)x2+(a+2)x-11y+8.,由于原式的值与字母x的取值無关,,因此1-b=0,a+2=0.,因此a=-2,b=1.,拓展提高,3,小明做了壹道題:“已知两個多项式A和B,其中B=3x2-5x+1,试求A-B.”他误将“A-B”當作“A+B”,得出的成果是5x2+3x-7.請你幫小明求出這道題的對

22、的成果.,解:由于A+B=5x2+3x-7,B=3x2-5x+1,,因此A=(5x2+3x-7)-(3x2-5x+1)=5x2+3x-7-3x2+5x-1=2x2+8x-8.,因此A-B=(2x2+8x-8)-(3x2-5x+1)=2x2+8x-8-3x2+5x-1=-x2+13x-9.,2.2整式的加減,整式的加減,知识回忆,合并同类项的法则:,合并同类项後,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.,去括号法则:,1.假如括号外的因数是正数,去括号後原括号内各项的符号与本来的符号相似;,2.假如括号外的因数是负数,去括号後原括号内各项的符号与本来的符号相反,學习目的,

23、2.能运用整式的加減处理实际問題.,1.深入熟悉整式的加減运算的措施.,課堂导入,我們前面學习了整式的加減,那么整式的加減在实际生活中有怎样的应用呢?怎样运用整式的加減处理实际問題呢?這就是本节課我們要學习的内容.,知识點1,新知探究,例 笔记本的單价是x元,圆珠笔的單价是y元.小紅买3本笔记本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买這些笔记本和圆珠笔,小紅和小明壹共花费多少钱?,解法1:小紅买笔记本和圆珠笔共花费(3x+2y)元,,小明买笔记本和圆珠笔共花费(4x+3y)元.,小紅和小明壹共花费(單位:元),(3x+2y)+(4x+3y)=3x+2y+4x+3y=7x+5y.,知识點

24、1,新知探究,解法2:小紅和小明买笔记本共花费(3x+4x)元,,买圆珠笔共花费(2y+3y)元.,小紅和小明壹共花费(單位:元),(3x+4x)+(2y+3y)=7x+5y.,例 笔记本的單价是x元,圆珠笔的單价是y元.小紅买3本笔记本,2 支圆珠笔;小明买4本笔记本,3支圆珠笔.买這些笔记本和圆珠笔,小紅和小明壹共花费多少钱?,知识點1,新知探究,例 做两個長方体紙盒,尺寸如下(單位:cm):,长,宽,高,小纸盒,a,b,c,大纸盒,1.5,a,2,b,2,c,(1)做這两個紙盒共用料多少平方厘米?,(2)做大紙盒比做小紙盒多用料多少平方厘米?,解:小紙盒的表面积是(2ab+2bc+2ca

25、)cm2,,大紙盒的表面积是(6ab+8bc+6ca)cm2.,知识點1,新知探究,例 做两個長方体紙盒,尺寸如下(單位:cm):,长,宽,高,小纸盒,a,b,c,大纸盒,1.5,a,2,b,2,c,(1)做這两個紙盒共用料多少平方厘米?,(2)做大紙盒比做小紙盒多用料多少平方厘米?,解:(1)做這两個紙盒共用料(單位:cm2),(2ab+2bc+2ca)+(6ab+8bc+6ca),=2ab+2bc+2ca+6ab+8bc+6ca,=8ab+10bc+8ca.,知识點1,新知探究,例 做两個長方体紙盒,尺寸如下(單位:cm):,长,宽,高,小纸盒,a,b,c,大纸盒,1.5,a,2,b,2,

26、c,(1)做這两個紙盒共用料多少平方厘米?,(2)做大紙盒比做小紙盒多用料多少平方厘米?,解:(2)做大紙盒比做小紙盒多用料(單位:cm2),(6ab+8bc+6ca)(2ab+2bc+2ca),=6ab+8bc+6ca2ab 2bc2ca,=4ab+6bc+4ca.,壹列火車上原有乘客(6a-2b)人,中途有二分之壹乘客下車,又有若干乘客上車,此時車上共有乘客(10a-6b)人.试問:,中途上車的乘客有多少人?,(2)當a=200,b=100時,中途上車的乘客有多少人?,随堂练习,1,解:(2)當a=200,b=100時,,7a-5b=7200-5100=1 400-500=900.,故中途

27、上車的乘客有900人.,随堂练习,1,壹列火車上原有乘客(6a-2b)人,中途有二分之壹乘客下車,又有若干乘客上車,此時車上共有乘客(10a-6b)人.试問:,中途上車的乘客有多少人?,(2)當a=200,b=100時,中途上車的乘客有多少人?,随堂练习,2,20,观测下图:,它們是按壹定规律排列的,根据此规律,第9個图中共有 颗.,課堂小結,用整式加減处理实际問題的壹般环节:,(1)根据題意列代数式;,(2)去括号、合并同类项;,(3)得出最终成果.,解:观测数轴可知,1a2,b0,2+b0,a-20,3b-2a0.,因此|2-3b|-2|2+b|+|a-2|-|3b-2a|,=(2-3b)

28、2-(2+b)+-(a-2)-(3b-2a),=2-3b-2(-2-b)+(-a+2)-(-3b+2a).,=2-3b+4+2b-a+2+3b-2a,=-3a+2b+8.,拓展提高,1,已知有理数,a,,,b,在数轴上的位置如图所,示,化,简,|2-3,b,|-2|2+,b,|+|,a,-2|-|3,b,-2,a,|.,拓展提高,2,如图所示是某月的月历,带阴影的方框内有9個数字.,(1)探究方框内的9個数字之和与方框正中间的数字,有什么关系?,(2)不变化方框的大小,任意移動方框的位置,你能得,到什么結论?并阐明理由.,(3)當方框正中间的数字為16時,求方框内9個数字的和.,解:(1)方

29、框内的9個数字之和是方框正中间的数字的9倍.,拓展提高,2,解:(2)結论:方框内的9個数字之和是方框正中间的数字的9倍.,理由:设方框正中间的数字為x,则其他的8個数字分别為x-8,x-7,x-6,x-1,x+1,x+6,x+7,x+8.這9個数字的和為x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x,,因此方框内的9個数字之和是方框正中间的数字的9倍.,如图所示是某月的月历,带阴影的方框内有9個数字.,(1)探究方框内的9個数字之和与方框正中间的数字,有什么关系?,(2)不变化方框的大小,任意移動方框的位置,你能得,到什么結论?并阐明理由.,(3)當方框正中间的数字

30、為16時,求方框内9個数字的和.,拓展提高,2,解:(3)由(2)的結论可知,方框内9個数字的和為916=144.,如图所示是某月的月历,带阴影的方框内有9個数字.,(1)探究方框内的9個数字之和与方框正中间的数字,有什么关系?,(2)不变化方框的大小,任意移動方框的位置,你能得,到什么結论?并阐明理由.,(3)當方框正中间的数字為16時,求方框内9個数字的和.,拓展提高,3,有三個农場在壹条公路边,如图中的A,B,C处.A处农場年产小麦50吨,B处农場年产小麦10吨,C处农場年产小麦60吨.要在這条公路边修建壹种仓库收购這些小麦.假设运费從A到C方向是1.5元/(吨仟米),從C到A方向是1元

31、/(吨仟米),那么仓库应當建在何处才能使總运费最低?,解:设仓库建在B,C之间(含B,C點),离B x仟米处,则總运费為,1.550(50+x)+1.510 x+160(120-x)=(10 950+30 x)(元).,當x=0,即仓库建在B处時,總运费最低,最低為10 950元.,拓展提高,3,解:设仓库建在A,B之间(含A點),离B y仟米处,则總运费為,1.550(50-y)+110y+160(120+y)=(10 950-5y)(元).,由于0y50,,因此當y=50,即仓库建在A处時,總运费最低,最低為10 700元.,综上,仓库建在A处時總运费最低.,有三個农場在壹条公路边,如图中的A,B,C处.A处农場年产小麦50吨,B处农場年产小麦10吨,C处农場年产小麦60吨.要在這条公路边修建壹种仓库收购這些小麦.假设运费從A到C方向是1.5元/(吨仟米),從C到A方向是1元/(吨仟米),那么仓库应當建在何处才能使總运费最低?,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服