ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:188.50KB ,
资源ID:10813769      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10813769.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2019高考数学(文科)习题-第十章-圆锥曲线与方程-课时撬分练10-2-word版含答案.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019高考数学(文科)习题-第十章-圆锥曲线与方程-课时撬分练10-2-word版含答案.doc

1、……………………………………………… ………………………………………………   时间:60分钟 基础组 1.已知双曲线-=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为(  ) A.5x2-=1 B.-=1 C.-=1 D.5x2-=1 答案 D 解析 ∵抛物线的焦点为F(1,0),∴c=1. 又=,∴a=,∴b2=c2-a2=1-=. 故所求方程为5x2-=1,故选D. 2.“m<8”是“方程-=1表示双曲线”的(  ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 A

2、 解析 方程-=1表示双曲线,则(m-8)(m-10)>0,解得m<8或m>10,故“m<8”是“方程-=1表示双曲线”的充分不必要条件,故选A. 3. 已知点M(-3,0)、N(3,0)、B(1,0),动圆C与直线MN相切于点B,分别过点M、N且与圆C相切的两条直线相交于点P,则点P的轨迹方程为(  ) 点击观看解答视频 A.x2-=1(x>1) B.x2-=1(x>0) C.x2-=1(x>0) D.x2-=1(x>1) 答案 A 解析 如图所示,设两切线分别与圆相切于点S、T,则|PM|-|PN|=(|PS|+|SM|)-(|PT|+|TN|)=|SM|-|TN|=

3、BM|-|BN|=2=2a,所以所求曲线为双曲线的右支且不能与x轴相交,a=1,c=3,所以b2=8,故点P的轨迹方程为x2-=1(x>1). 4.以正三角形ABC的顶点A,B为焦点的双曲线恰好平分边AC,BC,则双曲线的离心率为(  ) A.-1 B.2 C.+1 D.2 答案 C 解析 如图,设|AB|=2c,显然|AD|=c,|BD|=c,即(-1)c=2a, ∴e==+1, ∴选C. 5.已知双曲线-=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为(  ) A.y=±x B.y=±x C.y=±2x D.y=±x 答案 A 解析

4、 由题意得,双曲线的离心率e==,故=,故双曲线的渐近线方程为y=±x,选A. 6. 已知双曲线C:-=1(a>0,b>0)的焦距为2,抛物线y=x2+1与双曲线C的渐近线相切,则双曲线C的方程为(  ) 点击观看解答视频 A.-=1 B.-=1 C.x2-=1 D.-y2=1 答案 D 解析 由对称性,取一条渐近线y=x即可,把y=x代入y=x2+1,得x2-x+1=0,由题意得Δ=-4××1=0,即a2=4b2,又c=,∴c2=a2+b2=5b2=5,∴b2=1,a2=4,选D. 7.已知双曲线-=1(a>0,b>0)的左焦点为F1,左、右顶点分别为A1、A2,P为双

5、曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为(  ) A.相交 B.相切 C.相离 D.以上情况都有可能 答案 B 解析 设以线段PF1,A1A2为直径的两圆的半径分别为r1,r2,若P在双曲线左支,如图所示,则|O2O1|=|PF2|=(|PF1|+2a)=|PF1|+a=r1+r2,即圆心距为半径之和,两圆外切,若P在双曲线右支,同理求得|O2O1|=r1-r2,故此时,两圆相内切,综上,两圆相切,故选B. 8.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=(  ) A.

6、 B. C. D. 答案 C 解析 由题意可知a=b=,∴c=2. ∵|PF1|=2|PF2|,又|PF1|-|PF2|=2, ∴|PF1|=4,|PF2|=2,|F1F2|=4. 由余弦定理得cos∠F1PF2= ==,故选C. 9.设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于(  ) A.4 B.8 C.24 D.48 答案 C 解析 双曲线的实轴长为2,焦距为|F1F2|=2×5=10.据题意和双曲线的定义知,2=|PF1|-|PF2|=|PF2|-|PF2|=|PF2|, ∴

7、PF2|=6,|PF1|=8. ∴|PF1|2+|PF2|2=|F1F2|2, ∴PF1⊥PF2, ∴S△PF1F2=|PF1|·|PF2|=×6×8=24,故选C. 10.已知F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P与点F2关于直线y=x对称,则该双曲线的离心率为(  ) A. B.  C.  D.2 答案 B 解析 由题意可知渐近线为PF2的中垂线,设M为PF2的中点,所以OM⊥PF2.tan∠MOF2==,因为OF2=c,所以MF2=b,OM=a.因此PF2=2b,PF1=2a,又因为PF2-PF1=2a,所以b=2a,则

8、c2=a2+b2=5a2,即c=a,故e==. 11.若双曲线-=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为________. 答案  解析 双曲线的一条渐近线方程为bx-ay=0,一个焦点坐标为(c,0).根据题意:=×2c,所以c=2b,a==b,所以e===. 12.双曲线-=1(a>0,b>0)的左、右焦点分别为F1和F2,左、右顶点分别为A1和A2,过焦点F2与x轴垂直的直线和双曲线的一个交点为P,若||是||和||的等比中项,则该双曲线的离心率为________. 答案  解析 由题意可知||2=||×||,即2+(a+c)2=2c

9、a+c),又c2=a2+b2,则a2=b2,所以e====. 能力组 13.双曲线C:-=1(a>0,b>0)与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,则双曲线C的离心率为(  ) A. B.1+ C.2 D.2+ 答案 B 解析 抛物线的焦点为F,且c=,所以p=2c.根据对称性可知公共弦AB⊥x轴,且AB的方程为x=,当x=时,yA=p,所以A.又因为双曲线左焦点F1的坐标为,所以|AF1|==p,又|AF|=p,所以p-p=2a,即(-1)×2c=2a,所以==+1,选B. 14.焦点为(0,6)且与双曲线-y2=1有相同渐

10、近线的双曲线方程是(  ) A.-=1 B.-=1 C.-=1 D.-=1 答案 B 解析 设所求双曲线方程为-y2=λ(λ≠0),因为焦点为(0,6),所以|3λ|=36,又焦点在y轴上,所以λ=-12,选B. 或利用排除法:因为焦点为(0,6),故排除A、D,又-y2=1的渐近线为y=±x,故选B. 15.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是(  ) A.|OA|>|OB| B.|OA|<|OB|

11、 C.|OA|=|OB| D.|OA|与|OB|大小关系不确定 答案 C 解析 如图,由于点Q为三角形PF1F2内切圆的圆心,故过点F2作PQ的垂线并延长交PF1于点N,易知垂足B为F2N的中点,连接OB, 则|OB|=|F1N|=(|F1P|-|F2P|)=a, 又设内切圆与PF1,PF2分别切于G,H, 则由内切圆性质可得|PG|=|PH|,|F1G|=|F1A|,|F2A|=|F2H|, 故|F1P|-|F2P|=|F1A|-|F2A|=2a, 设|OA|=x,则有x+c-(c-x)=2a, 解得|OA|=a,故有|OA|=|OB|=a,故选C. 16. 已知F

12、1,F2为双曲线-=1(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P和Q.且△F1PQ为正三角形,则双曲线的渐近线方程为________. 点击观看解答视频 答案 y=±x 解析 解法一:设F2(c,0)(c>0),P(c,y0),代入方程得y0=±, ∵PQ⊥x轴,∴|PQ|=. 在Rt△F1F2P中,∠PF1F2=30°, ∴|F1F2|=|PF2|,即2c=·. 又∵c2=a2+b2,∴b2=2a2或2a2=-3b2(舍去), ∵a>0,b>0,∴=. 故所求双曲线的渐近线方程为y=±x. 解法二:∵在Rt△F1F2P中,∠PF1F2=30°,∴|PF1|=2|PF2|. 由双曲线定义知|PF1|-|PF2|=2a, ∴|PF2|=2a, 由已知易得|F1F2|=|PF2|, ∴2c=2a,∴c2=3a2=a2+b2,∴2a2=b2,∵a>0,b>0,∴=, 故所求双曲线的渐近线方程为y=±x.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服