1、九年级上册数学知识点 九年级上册数学知识点 不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。 2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 4、求不等式的解集的过程,叫做解不等式。 5、用数轴表示不等式的方法。 不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
2、 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。 一元一次不等式 1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。 2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数
3、化为1. 一元一次不等式组 1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。 2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。 3、求不等式组的解集的过程,叫做解不等式组。 4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。 5、一元一次不等式组的解法 (1)分别求出不等式组中各个不等式的解集。 (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。 6、不等式与不等式组 不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等
4、式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。 7、不等式的解集: ①能使不等式成立的未知数的值,叫做不等式的解。 ②一个含有未知数的不等式的所有解,组成这个不等式的解集。 ③求不等式解集的过程叫做解不等式。 三角形的中位线平行于三角形的第三边,并且等于第三边的一半. ①平行四边形的对边相等; ②平行四边形的对角相等; ③平行四边形的对角线互相平分. ①矩形具有平行四边形的一切性质; ②矩形的四个角都是直角;
5、③矩形的对角线相等. 正方形的判定与性质 1.判定方法: (1)邻边相等的矩形; (2)邻边垂直的菱形; (3)对角线垂直的矩形; (4)对角线相等的菱形; 2.性质: (1)边:四边相等,对边平行; (2)角:四个角都相等都是直角,邻角互补; (3)对角线互相平分、垂直、相等,且每长对角线平分一组内角。 等腰三角形的判定定理 1.有两条边相等的三角形是等腰三角形。 2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。 角平分线:把一个角平分的射线叫该角的角平分线。
6、定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点 性质定理:角平分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角平分线上 标准差与方差 极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。 计算器——求标准差与方差的一般步骤: 1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。 2.在开始数据输入之前,请务必按“SHIFT”“
7、CLR”“1”“=”键清除统计存储器。 3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。 4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差; 5.标准差的平方就是方差。 单项式与多项式 仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。 单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。 当一个单项式的系数是1或-1
8、时,“1”通常省略不写。 一个单项式中,所有字母的指数的和叫做这个单项式的次数。 如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。 1、多项式 有有限个单项式的代数和组成的式子,叫做多项式。 多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。 单项式可以看作是多项式的特例 把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。 在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含
9、单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。 2、多项式的值 任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。 3、多项式的恒等 对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。 性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。 性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对
10、应相等。 4、一元多项式的根 一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。 多项式的加、减法,乘法 1、多项式的加、减法 2、多项式的乘法 单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。 3、多项式的乘法 多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。 常用乘法公式 公式I平方差公式 (a+b)(a-b)=a-b 两个数的和与这两个数的差的积等于这两个数的平方差。 九年级上册数学学习方法 养成良
11、好的学习数学习惯 多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 及时了解、掌握常用的数学思想和方法 中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,
12、分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 九年级上册数学学习技巧 养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。






