ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:171.24KB ,
资源ID:10675264      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10675264.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(重庆2019年24题代数阅读理解.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

重庆2019年24题代数阅读理解.doc

1、重庆2019年24题代数阅读理解 1.(巴南保送)阅读下列材料,并用相关的思想方法解决问题。 例:若多项式分解因式的结果中有因式,求实数的值. 解:设,若,则, 由得,则是方程的解 所以,即,. 解决问题:(1)若多项式分解因式的结果中有因式,求实数的值; (2) 若多项式分解因式的结果中有因式和, ①求出的值;②直接写出方程的解. 2(一中半期)裂项法。这是分解与组合思想在一组数求和中的应用,将这组数中的每项分解,然后重新组合,使之能消去一部分,最终达到求和的目的。例如: ===. 若以上例子分母为也能用此方法列项,即: 其实,整

2、式也能进行裂项求和,例: ;; 根据以上材料,回答下列问题:(注:此题为正整数) (1) 计算: ; (2) 裂项整式= ; (3) 若,,是判断:与的大小. 3(一中一模)初中数学学习阶段,我们常常会利用一些变形技巧来化简式子,解答问题。 材料一:在解决分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算的目的. 例,已知:,求代数式的值. 解:,即,, 材料二:在解决某些连等是问题问题时,通常可以引入参数“”,将连等式变成几个值为的等式

3、这样就可以通过适当变形解决问题. 例:若,且,求的值. 解:令,则, 根据材料回答问题:(1)已知,则 ; (2)解分式方程组: (3)若,, 且求的值. 4. (西师附中适应考试)阅读下列材料,解决材料后的问题: 材料一:对于实数我们将与的“友好数”用表示,定义:.例如17与16的友好数为. 材料二:对于实数,用表示不超过实数的最大整数,及满足条件,例如: , ,,.... (1) 由材料一知:与1的“友好数”可以用表

4、示,已知,请求出的值; (2) 已知,请求出实数的取值范围; (3) 已知实数满足条件且,请求出的最小值. 5. 《见微知著》谈到:从一个简单地经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法. 阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体带入;(4)整体求和等. 例如:,求证: 证明:原始= 波利亚在《怎样解题》中指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长。”类似问题我们有更多的式子满足以上特征. 阅读材料二: 基本不等式,当且仅当时等号成立,它是解决最值问题的有力工具. 例如:在的条件下,当为何值时,有最小值,最小值是多少? 解:,即,. 当且仅当,即时,有最小值,最小值为2. 请根据阅读材料解答下列问题: (1) 已知,求下列各式的值: ① ;② ; (2) 若,解方程. (3) 若正数满足,求的最小值.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服