ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:277.01KB ,
资源ID:10644946      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10644946.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(指数函数专题讲义含答案.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

指数函数专题讲义含答案.doc

1、 既然选择了远方,便只顾风雨兼程 第一期思维训练班数学讲义(六) 指数函数专题 题型一:指数运算 例一.(1)化简(a, b为正数)的结果是_______________. (2) =_____________. 题型二:指数函数定义域、值域 例二.(1)函数的定义域为R,求实数的取值范围. (2)函数的值域为,求实数的取值范围. 题型三:指数函数单调性 例三.若函数f(x)=是R上的增函数,则实数a的取值范围为(  ) . A.(1,+∞) B.(1,8) C.(4,8) D.[4,8) 题型四:判断奇偶性 例四.判断函数的奇

2、偶性. 题型五:解指数方程、不等式 例五.(1)解方程. (2)解不等式. 题型六:不等式恒成立问题 例六.函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围. 强化训练 1.函数在R上是减函数,则的取值范围是( ). A. B. C. D. 2. 不论a为何值时,函数恒过定点,则这个定点的坐标是 (   ). A. B. C. D. 3. 若,那么的值为(   ).   A. 1 B.

3、2 C. 5 D. 1或5 4. 若关于的方程有解,则的范围是(   ).   A. B. C. D. 5. 函数的图象的大致形状是(   ) . 6.若关于x的方程有两个不等实根,则a的取值范围是(  ) . A.(0,1)∪(1,+∞) B.(0,1) C.(1,+∞) D.(0,) 7. 若指数函数在[-1,1]上的最大值与最小值的差是1,则底数a等于( ). A. B. C. D. 8. 设,则(  ). A. B. C. D. 9.函数是指数函数,则__________ . 10

4、函数在区间上的值域是__________ . 11.函数在区间上有最大值14,则的值是__________ . 12.若函数的定义域和值域都是,则实数a的值为________. 13.已知,且,求的值. 14.已知函数. (1)求函数的定义域; (2)判断函数的奇偶性; (3)证明:. 15.已知. (1)判断的奇偶性; (2)讨论的单调性; (3)当恒成立,求的取值范围. 16. 已知定义域为R的函数是奇函数. (1)求的值; (2)若对任意t∈

5、R,不等式恒成立,求的取值范围. 指数函数参考答案 命题:焦雷 例题一:(1) . (2)100. 例题二:(1). (2). 例题三:答案:D.因为f(x)在R上是增函数,故结合图象知,解得4≤a<8. 例题四:奇函数. 例题五:(1).(2). 例题六:解:由题意得1+2x+4xa>0在x∈(-∞,1]上恒成立, 即a>-在x∈(-∞,1]上恒成立. 又因为-=-()2x-()x, 设t=()x, ∵x≤1,∴t≥ 且函数f(t)=-t2-t=-(t+)2+(t≥) 在t=时,取到最大值. ∴()x=即x

6、=1时,-的最大值为-, ∴a>-. 强化训练 1-5 DCDAD 6-8 DDC. 9.答案:2. 10.答案:. 11. 3或.解:令,则,函数可化为,其对称轴为.   ∴当时,∵,   ∴,即.   ∴当时,.   解得或(舍去);   当时,∵,   ∴,即,   ∴ 时,,   解得或(舍去),∴a的值是3或. 12. 答案:. 13. 答案:.解:由题意设0<x<y ∵xy=9,∴ ∴x+y﹣2==12﹣6=6 x+y+2==12+6=18 ∴=,= ∴=. 14. (1)解 由2x-1≠0⇒x≠0, 所以定义域为(-∞,0

7、)∪(0,+∞). (2)证明 f(x)=(+)x3可化为f(x)=·x3, 则f(-x)=(-x)3 =x3=f(x), 所以f(-x)=f(x).f(x)为偶函数. (3)证明 当x>0时,2x>1,x3>0, 所以(+)x3>0. 因为f(-x)=f(x), 所以当x<0时,f(x)=f(-x)>0. 综上所述,f(x)>0. 15. 解 (1)函数定义域为R,关于原点对称. 又因为f(-x)=(a-x-ax)=-f(x), 所以f(x)为奇函数. (2)当a>1时,a2-1>0, y=ax为增函数,y=a-x为减函数,从而y=ax-a-x为增函数, 所

8、以f(x)为增函数. 当00,且a≠1时,f(x)在定义域内单调递增. (3)由(2)知f(x)在R上是增函数, ∴在区间[-1,1]上为增函数, ∴f(-1)≤f(x)≤f(1), ∴f(x)min=f(-1)=(a-1-a)=·=-1. 16. 解 (1)∵f(x)是定义域为R的奇函数, ∴f(0)=0,即=0,解得b=1 从而有f(x)=. 又由f(1)=-f(-1)知 =-, 解得a=2.经检验a=2适合题意,∴所求a、b的值分别为2、1. (2)由(1)知f(x)==-+. 由上式易知f(x)在(-∞,+∞)上为减函数 又因f(x)是奇函数, 从而不等式f(t2-2t)<-f(2t2-k) =f(-2t2+k) 因为f(x)是减函数,由上式推得t2-2t>-2t2+k. 即对一切t∈R有3t2-2t-k>0. 从而判别式Δ=4+12k<0,解得k<-. 7

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服