ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:55.04KB ,
资源ID:10503764      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10503764.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(安徽专版沪科版八年级上册数学第十三章:三角形中的边角关系、命题与证明达标测试题.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

安徽专版沪科版八年级上册数学第十三章:三角形中的边角关系、命题与证明达标测试题.doc

1、第十三章达标测试卷 一、选择题(每题3分,共30分) 1.下列语句中是命题的有(  ) ①两条直线相交,只有一个交点.②连接AB.③π不是有理数.④若∠ABD=∠CBD,则BD是∠ABC的平分线. A.1个 B.2个 C.3个 D.4个 2.下列每组数分别表示三根木棒的长,将木棒首尾连接后,能摆成三角形的一组是(  ) A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4 3.在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠C等于(  ) A.45° B.60° C.75° D.90° 4.下面给出的四个命题中,假命题是(  )

2、 A.如果a=3,那么|a|=3 B.如果x2=4,那么x=±2 C.如果(a-1)(a+2)=0,那么a-1=0或a+2=0 D.如果(a-1)2+(b+2)2=0,那么a=1或b=-2 5.对于命题“如果∠1+∠2=180°,那么∠1≠∠2”,能说明它是假命题的例子是(  ) A.∠1=100°,∠2=80° B.∠1=50°,∠2=50° C.∠1=∠2=90° D.∠1=80°,∠2=80° 6.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12

3、则S△ADF-S△BEF=(  ) A.1 B.2 C.3 D.4 (第6题) (第7题) (第8题) (第9题)  (第10题) 7.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为(  ) A.118° B.119° C.120° D.121° 8.如图,AD是∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD等于(  ) A.25° B.85° C.60° D.95° 9.如图,把一张三角形纸片沿DE

4、折叠,当点A落在四边形BCED的内部时,∠A、∠1、∠2之间的关系是(  ) A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=∠1+∠2 D.4∠A=∠1+∠2 10.如图,锐角三角形ABC中,BC>AB>AC,小靖依下列步骤作图: (1)作∠A的平分线交BC于D点; (2)作AD的中垂线交AC于E点; (3)连接DE. 根据他画的图形,判断下列关系何者正确?(    ) A.DE⊥AC B.DE∥AB C.CD=DE D.CD=BD 二、填空题(每题3分,共12分) 11.如图,在△ABC中,点P是△ABC的角平分线的交点,则∠PBC+∠

5、PCA+∠PAB=________度. (第11题) (第13题) 12.命题“和为180°的两个角互为补角”的逆命题是_________________________________________________________________. 13.如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,则∠ACD的度数为________. 14.在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α,∠B增加β,∠C增加γ,则α、β、γ三者之间的等量关系是________

6、. 三、解答题(15,17题每题5分,21~23题每题8分,其余每题6分,共58分) 15.如图,∠ABC的两边分别平行于∠DEF的两边,且∠ABC=25°. (1)∠1=________________,∠2=________________; (2)请观察∠1、∠2分别与∠ABC有怎样的关系,归纳出一个命题. (第15题) (第16题) 16.如图,(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=2 cm,A

7、E=3 cm,求△AEC的面积及CE的长. 17.如图,AD、AF分别是△ABC中∠BAC的平分线和BC边上的高,已知∠B=36°,∠C=76°,求∠DAF的大小. (第17题) 18.“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框. (1)满足上述条件的三角形木框,共有________种; (2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元/分米,问至少需要多少钱购买材料?(忽略接头) 19.如图,一艘渔船在B处测得灯塔A在北偏东60°的方向,另一艘货轮在C处测得灯塔A在北偏东40°的方向,那么在灯

8、塔A处观看B和C时的视角∠BAC是多少度? (第19题) 20.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD、CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数. (第20题) 21.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明; (2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空. x=____________°;x=____________°;x=____________°; (3)如图③,一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=_______

9、°. (第21题) 22.已知,如图,在△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°. (1)求∠2的度数; (2)若∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系?请说明理由. (第22题) 23.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点. (1)试猜想∠EFD,∠B,∠C的关系,并说明理由; (2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由. (第23题) 第 8 页 答案 一、1.C  2.B 点拨:根据三角形的三边关系:三角形中任何两边

10、的和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.只有B选项中1+2>2,能组成三角形,故选B. 3.C 4.D 5.C 点拨:A满足条件∠1+∠2=180°,也满足结论∠1≠∠2,故错误; B不满足条件,也不满足结论,故错误; C满足条件,不满足结论,故正确; D不满足条件,也不满足结论,故错误. 6.B 7.C 8.D 点拨:由题意得∠CAD=∠DAE=60°,∴∠BAC=60°,∴∠ACD=∠B+∠BAC=35°+60°=95°. 9.B 点拨:连接AA′.由折叠的性质知:∠DAE=∠DA′E.由三角形外角的性质知:∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠

11、EA′A,则∠1+∠2=∠DAE+∠DA′E=2∠DAE,即∠1+∠2=2∠DAE.故选B. 10.B 点拨:依据题意画出图形如图所示,可知∠1=∠2,AE=DE. ∴∠2=∠3. ∴∠1=∠3,即DE∥AB.故选B. (第10题) 二、11.90 12.互为补角的两个角的和为180° 13.83° 点拨:∵DF⊥AB, ∴∠AFE=90°. ∴∠AEF=90°-∠A=90°-35°=55°.∴∠CED=∠AEF=55°.∴∠ACD=180°-∠CED-∠D=180°-55°-42°=83°. 14.α=β+γ 点拨:∵三角形内角和是一个定值,为180°,∴∠A+∠B+∠C

12、=180°,当∠A越来越小,∠B、∠C越来越大时,∠A-α+∠B+β+∠C+γ=180°,∴α=β+γ. 三、15.解:(1)25°;155°(2)命题:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补. 16.解:(1)AB (2)CD (3)EF (4)S△AEC=AE·CD=×3×2=3(cm2).又S△AEC=CE·AB,所以3=×CE×2,所以CE=3 cm. 17.解:∵∠BAC+∠B+∠C=180°, ∠B=36°,∠C=76°, ∴∠BAC=68°. ∵AD为∠BAC的平分线, ∴∠BAD=34°, ∴∠ADC=∠BAD+∠B=70°. 又∵

13、AF为BC边上的高, ∴∠DAF=90°-∠ADC=20°. 18.解:(1)3 (2)设第三边长为x分米,则由三角形的三边关系,得7-3<x<7+3,即4<x<10,又x为奇数,所以x取5,7,9.[(7+3+5)+(7+3+7)+(7+3+9)]×8=51×8=408(元) 答:至少需要408元钱购买材料. 19.解:依题意,得∠DBA=60°, ∠FCA=40°. ∴∠ABC=∠DBC-∠DBA=90°-60°=30°,∠BCA=∠BCF+ ∠FCA=90°+40°=130°. ∴ 在△ABC中, ∠BAC=180°-∠ABC-∠BCA=180°-30°-130°=20

14、°. 答:在灯塔A处观看B和C时的视角∠BAC是20°. 20.解:∵CE⊥AB,∴∠AEC=90°. ∴∠ACE=180°-∠BAC-∠AEC=24°. ∵AD平分∠BAC,∴∠DAC=∠BAC=33°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠APC=∠ADC+∠BCE=83°+40°=123°. 21.(1)证明:如图,延长BO交AC于点D,则∠BOC=∠BDC+∠C, 又∵∠BDC=∠A+∠B, ∴∠BOC=∠B+∠C+∠A. (第21题) (2)180;180;180 (3)140 22.解:

15、1)∵∠1=∠C,∠2=2∠3,∴∠C=∠1=∠2+∠3=2∠3+∠3=3∠3.∵∠BAC+∠2+∠C=180°,∴70°+2∠3+3∠3=180°.∴∠3=22°,∴∠2=2∠3=44°. (2)AE⊥BC.理由如下:∵∠DAC=∠BAC-∠3=70°-22°=48°,AE平分∠DAC,∴∠DAE=∠DAC=24°,由(1)知∠1=3∠3=66°,∴∠AED=180°-∠1-∠DAE=180°-66°-24°=90°,即AE⊥BC. 23.解:(1)∠EFD=∠C-∠B. 理由如下:由AE是∠BAC的平分线知∠BAE=∠BAC. 由三角形外角的性质知∠FED=∠B+∠BAC, 故∠B+∠BAC+∠EFD=90°①. 在△ABC中,由三角形内角和定理得 ∠B+∠BAC+∠C=180°, 即∠C+∠B+∠BAC=90°②. ②-①,得∠EFD=∠C-∠B. (2)成立. 理由如下:由对顶角相等和三角形的外角性质知:∠FED=∠AEC=∠B+∠BAC, 故∠B+∠BAC+∠EFD=90°①. 在△ABC中,由三角形内角和定理得: ∠B+∠BAC+∠C=180°,即∠B+∠BAC+∠C=90°②.②-①,得∠EFD=∠C-∠B.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服