ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:80.50KB ,
资源ID:10316706      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10316706.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(1112学年高中数学2.3数学归纳法同步练习新人教A版选修.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

1112学年高中数学2.3数学归纳法同步练习新人教A版选修.doc

1、 选修2-2 2. 3 数学归纳法 一、选择题 1.用数学归纳法证明1+++…+1)时,第一步应验证不等式(  ) A.1+<2       B.1++<2 C.1++<3 D.1+++<3 [答案] B [解析] ∵n∈N*,n>1,∴n取第一个自然数为2,左端分母最大的项为=,故选B. 2.用数学归纳法证明1+a+a2+…+an+1=(n∈N*,a≠1),在验证n=1时,左边所得的项为(  ) A.1 B.1+a+a2 C.1+a D.1+a+a2+a3 [答案] B [解析] 因为当n=1时,an+1=a2,所以此时式

2、子左边=1+a+a2.故应选B. 3.设f(n)=++…+(n∈N*),那么f(n+1)-f(n)等于(  ) A. B. C.+ D.- [答案] D [解析] f(n+1)-f(n) = -=+- =-. 4.某个命题与自然数n有关,若n=k(k∈N*)时,该命题成立,那么可推得n=k+1时该命题也成立.现在已知当n=5时,该命题不成立,那么可推得(  ) A.当n=6时该命题不成立 B.当n=6时该命题成立 C.当n=4时该命题不成立 D.当n=4时该命题成立 [答案] C [解析] 原命题正确,则逆否命题正确.故应选C. 5.用数学归纳法证明命题“当

3、n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是(  ) A.假设n=k(k∈N*),证明n=k+1时命题也成立 B.假设n=k(k是正奇数),证明n=k+1时命题也成立 C.假设n=k(k是正奇数),证明n=k+2时命题也成立 D.假设n=2k+1(k∈N),证明n=k+1时命题也成立 [答案] C [解析] ∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C. 6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为(  ) A.f(n)+n+1 B.f(n)+n C.f(n)+n-1 D.f(

4、n)+n-2 [答案] C [解析] 增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C. 7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证(  ) A.n=1时命题成立 B.n=1,n=2时命题成立 C.n=3时命题成立 D.n=1,n=2,n=3时命题成立 [答案] D [解析] 假设n=k时不等式成立,即2k>k2-2, 当n=k+1时2k+1=2·2k>2(k2-2) 由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0 ⇔(k+1)(k

5、-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D. 8.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为(  ) A.30 B.26 C.36 D.6 [答案] C [解析] 因为f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,推测最大的m值为36. 9.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2、a3、a4,猜想an=(  ) A. B. C. D. [答案] B

6、[解析] 由Sn=n2an知Sn+1=(n+1)2an+1 ∴Sn+1-Sn=(n+1)2an+1-n2an ∴an+1=(n+1)2an+1-n2an ∴an+1=an (n≥2). 当n=2时,S2=4a2,又S2=a1+a2,∴a2== a3=a2=,a4=a3=. 由a1=1,a2=,a3=,a4= 猜想an=,故选B. 10.对于不等式≤n+1(n∈N+),某学生的证明过程如下: (1)当n=1时,≤1+1,不等式成立. (2)假设n=k(k∈N+)时,不等式成立,即

7、) A.过程全都正确 B.n=1验证不正确 C.归纳假设不正确 D.从n=k到n=k+1的推理不正确 [答案] D [解析] n=1的验证及归纳假设都正确,但从n=k到n=k+1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D. 二、填空题 11.用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步的验证为________. [答案] 当n=1时,左边=4,右边=4,左≥右,不等式成立 [解析] 当n=1时,左≥右,不等式成立, ∵n∈N*,∴第一步的验证为n=1的情形. 12.已知数列,,,…,,通过计算得S1=

8、S2=,S3=,由此可猜测Sn=________. [答案]  [解析] 解法1:通过计算易得答案. 解法2:Sn=+++…+ =+++…+ =1-=. 13.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________. [答案] 5 [解析] 当n=1时,36+a3能被14整除的数为a=3或5,当a=3时且n=3时,310+35不能被14整除,故a=5. 14.用数学归纳法证明命题:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2. (1)当n0=________时,左边=____________,右边=____________

9、当n=k时,等式左边共有________________项,第(k-1)项是__________________. (2)假设n=k时命题成立,即_____________________________________成立. (3)当n=k+1时,命题的形式是______________________________________;此时,左边增加的项为______________________. [答案] (1)1;1×(3×1+1);1×(1+1)2;k; (k-1)[3(k-1)+1] (2)1×4+2×7+3×10+…+k(3k+1)=k(k+1)

10、2 (3)1×4+2×7+…+(k+1)[3(k+1)+1] =(k+1)[(k+1)+1]2;(k+1)[3(k+1)+1] [解析] 由数学归纳法的法则易知. 三、解答题 15.求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*). [证明] ①n=1时,左边=12-22=-3,右边=-3,等式成立. ②假设n=k时,等式成立,即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2. 当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1

11、)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所以n=k+1时,等式也成立. 由①②得,等式对任何n∈N*都成立. 16.求证:+++…+>(n≥2). [证明] ①当n=2时,左=>0=右, ∴不等式成立. ②假设当n=k(k≥2,k∈N*)时,不等式成立. 即++…+>成立. 那么n=k+1时,++…+ ++…+ >++…+>+++…+ =+=, ∴当n=k+1时,不等式成立. 据①②可知,不等式对一切n∈N*且n≥2时成立. 17.在平面内有n条直线,其中每两条直线相交于一点,并且每三条直线都不相

12、交于同一点. 求证:这n条直线将它们所在的平面分成个区域. [证明] (1)n=2时,两条直线相交把平面分成4个区域,命题成立. (2)假设当n=k(k≥2)时,k条直线将平面分成块不同的区域,命题成立. 当n=k+1时,设其中的一条直线为l,其余k条直线将平面分成块区域,直线l与其余k条直线相交,得到k个不同的交点,这k个点将l分成k+1段,每段都将它所在的区域分成两部分,故新增区域k+1块. 从而k+1条直线将平面分成+k+1=块区域. 所以n=k+1时命题也成立. 由(1)(2)可知,原命题成立. 18.(2010·衡水高二检测)试比较2n+2与n2的大小(n∈N*),并

13、用数学归纳法证明你的结论. [分析] 由题目可获取以下主要信息: ①此题选用特殊值来找到2n+2与n2的大小关系; ②利用数学归纳法证明猜想的结论. 解答本题的关键是先利用特殊值猜想. [解析] 当n=1时,21+2=4>n2=1, 当n=2时,22+2=6>n2=4, 当n=3时,23+2=10>n2=9, 当n=4时,24+2=18>n2=16, 由此可以猜想, 2n+2>n2(n∈N*)成立 下面用数学归纳法证明: (1)当n=1时, 左边=21+2=4,右边=1, 所以左边>右边, 所以原不等式成立. 当n=2时,左边=22+2=6, 右边=22=4,所以左边>右边; 当n=3时,左边=23+2=10,右边=32=9, 所以左边>右边. (2)假设n=k时(k≥3且k∈N*)时,不等式成立, 即2k+2>k2.那么n=k+1时, 2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2. 又因:2k2-2-(k+1)2=k2-2k-3 =(k-3)(k+1)≥0, 即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立. 根据(1)和(2),原不等式对于任何n∈N*都成立. - 7 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服