ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:384.50KB ,
资源ID:10316468      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10316468.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(初二数学动点问题练习(含答案).doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初二数学动点问题练习(含答案).doc

1、 动态问题 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。 当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 8

2、 2、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 5 3、如图,在中,,.点是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点.过点作交直线于点,设直线的旋转角为. (1)①当 度时,四边形是等腰梯形,此时的长为 ; O E C B D A l O C B A (备用图) ②当 度时,四边形是直角梯形,此时的长为 ; (2)当时,判断四边形是否为菱形,并说明理由. 解:(1)①30,1;②60,1.

3、5; (2)当∠α=900时,四边形EDBC是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形 在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴AB=4,AC=2. ∴AO== .在Rt△AOD中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形, ∴四边形EDBC是菱形 A C B E D N M 图3 A B C D E M N 图2 4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥

4、MN于D,BE⊥MN于E. C B A E D 图1 N M (1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE; (2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE; (3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC≌△CEB ② ∵△ADC≌△CEB

5、 ∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD≌△CBE ∴CE=AD,CD=BE ∴DE=CE-CD=AD-BE (3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE, 又∵AC=BC, ∴△ACD≌△CBE, ∴AD=CE,CD=BE, ∴DE=CD-CE=BE-AD. 5、数学课上,张老师出示了问题:如图1,

6、四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF. 经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确

7、吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G E B 图1 解:(1)正确. A D F C G E B M 证明:在上取一点,使,连接. .,. 是外角平分线,,. . A D F C G E B 图2 ,, . (ASA). . (2)正确. 证明:在的延长线上取一点.使,连接. A D F C G E B 图3 A D F C G E B N . . 四边形是正方形, . . . (ASA). . 6、如图, 射线MB上,MB=9,

8、A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t. 求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值; (3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值 7、如图1,在等腰梯形中,,是的中点,过点作交于点.,.求:(1)求点到的距离; (2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设. ①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由; ②当点在线段上时(如图3),是否存在点,使

9、为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由 A D E B F C 图4(备用) A D E B F C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M 图3 A D E B F C P N M (第25题) 解(1)如图1,过点作于点 ∵为的中点, ∴ 在中, ∴ ∴ 图1 A D E B F C G 即点到的距离为 (2)①当点在线段上运动时,的

10、形状不发生改变. ∵ ∴ ∵ ∴, 同理 如图2,过点作于,∵ 图2 A D E B F C P N M G H ∴ ∴ ∴ 则 在中, ∴的周长= ②当点在线段上运动时,的形状发生改变,但恒为等边三角形. 当时,如图3,作于,则 类似①, ∴ ∵是等边三角形,∴ 此时, 图3 A D E B F C P N M 图4 A D E B F C P M N 图5 A D E B F(P) C M N G G R G

11、 当时,如图4,这时 此时, 当时,如图5, 则又 ∴ 因此点与重合,为直角三角形. ∴ 此时, 综上所述,当或4或时,为等腰三角形. 8、如图,已知中,厘米,厘米,点为的中点. (1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动 ①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P

12、与点Q第一次在的哪条边上相遇? A Q C D B P 解:(1)①∵秒, ∴厘米, ∵厘米,点为的中点, ∴厘米. 又∵厘米, ∴厘米, ∴. 又∵, ∴, ∴. ②∵, ∴, 又∵,,则, ∴点,点运动的时间秒, ∴厘米/秒。 (2)设经过秒后点与点第一次相遇, 由题意,得,解得秒. ∴点共运动了厘米. ∵,∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇. 9、如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合. (1)证明不论E、F在BC.CD上如何滑动

13、总有BE=CF; (2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值. 【答案】解:(1)证明:如图,连接AC ∵四边形ABCD为菱形,∠BAD=120°, ∠BAE+∠EAC=60°,∠FAC+∠EAC=60°, ∴∠BAE=∠FAC。 ∵∠BAD=120°,∴∠ABF=60°。 ∴△ABC和△ACD为等边三角形。 ∴∠ACF=60°,AC=AB。∴∠ABE=∠AFC。 ∴在△ABE和△ACF中,∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC, ∴△ABE≌△AC

14、F(ASA)。∴BE=CF。 (2)四边形AECF的面积不变,△CEF的面积发生变化。理由如下: 由(1)得△ABE≌△ACF,则S△ABE=S△ACF。 ∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值。 作AH⊥BC于H点,则BH=2, 。 由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短. 故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小, 又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大. ∴S△CEF=S四边形AECF﹣S△AEF。 ∴△CEF的面

15、积的最大值是。 【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质。 【分析】(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠ACF =60°,AC=AB,从而求证△ABE≌△ACF,即可求得BE=CF。 (2)由△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可得四边形AECF的面积是定值。当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,根据S△CEF=S四边形

16、AECF-S△AEF,则△CEF的面积就会最大。 10、如图,在△AOB中,∠AOB=90°,OA=OB=6,C为OB上一点,射线CD⊥OB交AB于点D,OC=2.点P从点A出发以每秒个单位长度的速度沿AB方向运动,点Q从点C出发以每秒2个单位长度的速度沿CD方向运动,P、Q两点同时出发,当点P到达到点B时停止运动,点Q也随之停止.过点P作PE⊥OA于点E,PF⊥OB于点F,得到矩形PEOF.以点Q为直角顶点向下作等腰直角三角形QMN,斜边MN∥OB,且MN=QC.设运动时间为t(单位:秒). (1)求t=1时FC的长度. (2)求MN=PF时t的值. (3)当△QMN和矩形PEOF有

17、重叠部分时,求重叠(阴影)部分图形面积S与t的函数关系式. (4)直接写出△QMN的边与矩形PEOF的边有三个公共点时t的值. 考点: 相似形综合题.709388 分析: (1)根据等腰直角三角形,可得,OF=EP=t,再将t=1代入求出FC的长度; (2)根据MN=PF,可得关于t的方程6﹣t=2t,解方程即可求解; (3)分三种情况:求出当1≤t≤2时;当2<t≤时;当<t≤3时;求出重叠(阴影)部分图形面积S与t的函数关系式; (4)分M在OE上;N在PF上两种情况讨论求得△QMN的边与矩形PEOF的边有三个公共点时t的值. 解答: 解:(1)根据题意,△AOB、△AEP都是等腰直角三角形. ∵,OF=EP=t, ∴当t=1时,FC=1; (2)∵AP=t,AE=t,PF=OE=6﹣t MN=QC=2t ∴6﹣t=2t 解得t=2. 故当t=2时,MN=PF; (3)当1≤t≤2时,S=2t2﹣4t+2; 当2<t≤时,S=﹣t2+30t﹣32; 当<t≤3时,S=﹣2t2+6t; (4)△QMN的边与矩形PEOF的边有三个公共点时t=2或. 点评: 考查了相似形综合题,涉及的知识有等腰直角三角形的性质,图形的面积计算,函数思想,方程思想,分类思想的运用,有一定的难度. 8

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服