ImageVerifierCode 换一换
格式:PPTX , 页数:13 ,大小:382.29KB ,
资源ID:10285898      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/10285898.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(人教版锐角三角函数(3).pptx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版锐角三角函数(3).pptx

1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,锐角三角函数,第一课时,1,知识回顾,问题探究,课堂小结,(,1,),在直角三角形中,,30,角所对的直角边等于斜边的一半。,(,3,)相似三角形的判定:三边对应成比例的两三角形相似;两边对应成比例且夹角相等的两三角形相似;两角对应相等的两三角形相似;斜边和一条直角边成比例的两个直角三角形相似。,(,2,),勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。,2,知识回顾,问题探究,课堂小结,(,4,),相似三角形性质:相似三角形对应角相等、对应边成比例;相似三角形对应线段(中线、高、角平分线)之比等于

2、相似比;相似三角形的周长之比等于相似比、面积之比等于相似比的平方。,3,知识回顾,问题探究,课堂小结,创设情境,引出问题,活动,1,探究一:在直角三角形中,,30,、,45,角的对边比斜边是固定值吗?,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是,30,,为使出水口的高度为,35m,,那么需要准备多长的水管?如果使出水口的高度为,50m,,那么需要准备多长的水管?,分析:,问题转化为:在,RtABC,中,,C=90,,,A=30,,,BC=35m,,求,AB,的长。,根据“在直角三角形中,,30,角所

3、对的直角边等于斜边的一半”,即,可得,AB=2BC=70m,,即需要准备,70m,长的水管。同理,若,BC=50m,,则易求得,AB=100m,结论:在一个直角三角形中,如果一个锐角等于,30,,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 。,4,知识回顾,问题探究,课堂小结,探究一:在直角三角形中,,30,、,45,角的对边比斜边是固定值吗?,类比思考,举一反三,活动,2,结论:在一个直角三角形中,如果一个锐角等于,45,,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 。,如图,任意画一个,Rt,ABC,,使,C=90,,,A=45,,计算,A,的对边与斜边的比 ,

4、能得到什么结论?,5,知识回顾,问题探究,课堂小结,大胆猜想,归纳推理,活动,1,探究二:,在直角三角形中,任意锐角的对边比斜边是固定值吗?,一般地,当,A,取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?,如图:,Rt,ABC,与,Rt,ABC,,,C=C=90,,,A=A=,,那么 与 有什么关系?,分析:由于,C=C=90,,,A=A=,,,所以,Rt,ABCRt,ABC,,,即,结论:在直角三角形中,当锐角,A,的度数一定时,不管三角形的大小如何,,A,的对边与斜边的比也是一个固定值。,6,知识回顾,问题探究,课堂小结,理论提升,认识正弦,活动,1,探究三:什么是正弦?,

5、注意:,1,、,sinA,不是,sin,与,A,的乘积,而是一个整体;,2,、正弦的三种表示方式:,sinA,、,sin56,、,sinDEF,;,3,、,sinA,是两线段之比,故,sinA,是一个数,没有单位。,如图,在,Rt,ABC,中,,A,、,B,、,C,所对的边分别记为,a,、,b,、,c,,在,Rt,ABC,中,,C=90,,我们把锐角,A,的对边与斜边的比叫做,A,的正弦,记作,sinA.,则,sin30=,,,sin45=sinA,(举例说明:若,a=1,,,c=3,,则,sinA=,),思考:,B,的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?,7

6、大家有疑问的,可以询问和交流,可以互相讨论下,但要小声点,8,知识回顾,问题探究,课堂小结,初步运用,简单求值,活动,2,例,1,:在,Rt,ABC,中,,C=90,,求,sinA,和,sinB,的值。,解:(,1,)在,Rt,ABC,中,,AB=5,因此,,sinA=,,,sinB=,(,2,)在,Rt,ABC,中,,sinA=,,,AC=12,因此,,sinB=,点拨:正弦是直角三角形中锐角的对边与斜边之比,在直角三角形中,只要已知任意两条边的条件下,都可根据勾股定理求出第三边,进而求出正弦值。在解题中,准确画出图形并找出所求锐角是关键。,探究三:什么是正弦?,9,知识回顾,问题探究,课堂小结,知识梳理,(,1,)在,Rt,ABC,中,,C=90,,我们把锐角,A,的对边与斜边的比叫做,A,的正弦,记作,sinA=,(,2,),sin30=,,,sin45=,10,知识回顾,问题探究,课堂小结,重难点突破,(,1,)运用正弦计算时,关键是找准角的对边与斜边。,(,2,)如果一个锐角没有在直角三角形中,要构造直角三角形求解。,11,知识回顾,问题探究,课堂小结,求,sinA,就是要确定,A,的对边与斜边的比,求,sinB,就是要确定,B,的对边与斜边的比。,12,谢 谢,13,

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服