收藏 分销(赏)

山东省潍坊市年中考数学真题试卷和答案.doc

上传人:人****来 文档编号:9996193 上传时间:2025-04-16 格式:DOC 页数:69 大小:1.71MB
下载 相关 举报
山东省潍坊市年中考数学真题试卷和答案.doc_第1页
第1页 / 共69页
山东省潍坊市年中考数学真题试卷和答案.doc_第2页
第2页 / 共69页
点击查看更多>>
资源描述
山东省潍坊市年中考数学真题试卷和答案(全面完整版) (可以直接使用,可编辑 全面完整版资料,欢迎下载) 山东省潍坊市2021年中考数学真题试卷和答案 一、选择题(每小题3分,满分36分)。 1.下列算式,正确的是(  ) A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4D.(a2)2=a4 2.如图所示的几何体,其俯视图是(  ) A.B.C.D. 3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为(  ) A.1×103B.1000×108C.1×1011D.1×1014 4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是(  ) A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2) 5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于(  )之间. A.B与CB.C与DC.E与FD.A与B 6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足(  ) A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90° 7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选(  ) 甲 乙 平均数 9 8 方差 1 1 A.甲B.乙C.丙D.丁 8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是(  ) A.B.C.D. 9.若代数式有意义,则实数x的取值范围是(  ) A.x≥1B.x≥2C.x>1D.x>2 10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为(  ) A.50°B.60°C.80°D.90° 11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为(  )#N. A.0或B.0或2C.1或D.或﹣ 12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为(  ) A.或2B.或2C.或2D.或2 二、填空题(每小题3分,共18分)。 13.计算:(1﹣)÷=. 14.因式分解:x2﹣2x+(x﹣2)=. 15.如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:,可以使得△FDB与△ADE相似.(只需写出一个) 16.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是. 17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个. 18.如图,将一张矩形纸片ABCD的边BC斜着向AD边对折,使点B落在AD边上,记为B′,折痕为CE,再将CD边斜向下对折,使点D落在B′C边上,记为D′,折痕为CG,B′D′=2,BE=BC.则矩形纸片ABCD的面积为. 三、 解答题: 19.本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图. (1)根据给出的信息,补全两幅统计图; (2)该校九年级有600名男生,请估计成绩未达到良好有多少名? (3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少? 20.如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:≈1.73) 21.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元. (1)求两批次购进蒜薹各多少吨? (2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少? 22.如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA. (1)求证:EF为半圆O的切线; (2)若DA=DF=6,求阴影区域的面积.(结果保留根号和π) 23.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计) (1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大? (2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少? 24.边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2 (1)如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由. (2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P. ①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由; ②连接AP,当AP最大时,求AD′的值.(结果保留根号) 25.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t (1)求抛物线的解析式; (2)当t何值时,△PFE的面积最大?并求最大值的立方根; (3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由. 答案 一、选择题(每小题3分,满分36分) 1.D 2.D. 3.C. 4.B. 5.A. 6.解:过C作CF∥AB, ∵AB∥DE, ∴AB∥CF∥DE, ∴∠1=∠α,∠2=180°﹣∠β, ∵∠BCD=90°, ∴∠1+∠2=∠α+180°﹣∠β=90°, ∴∠β﹣∠α=90°, 故选B. 7.解:丙的平均数==9,丙的方差= [1+1+1=1]=0.4, 乙的平均数==8.2, 由题意可知,丙的成绩最好,  8.C. 9.B 10.解:如图,∵A、B、D、C四点共圆, ∴∠GBC=∠ADC=50°, ∵AE⊥CD, ∴∠AED=90°, ∴∠EAD=90°﹣50°=40°, 延长AE交⊙O于点M, ∵AO⊥CD, ∴, ∴∠DBC=2∠EAD=80°. 故选C. 11.解:当1≤x≤2时, x2=1,解得x1=,x2=﹣; 当﹣1≤x≤0时, x2=0,解得x1=x2=0; 当﹣2≤x<﹣1时, x2=﹣1,方程没有实数解; 所以方程[x]= x2的解为0或. 12.解:过B作直径,连接AC交AO于E, ∵点B为的中点, ∴BD⊥AC, ①如图①, ∵点D恰在该圆直径的三等分点上, ∴BD=×2×3=2, ∴OD=OB﹣BD=1, ∵四边形ABCD是菱形, ∴DE=BD=1, ∴OE=2, 连接OD, ∵CE==, ∴边CD==; 如图②,BD=×2×3=4, 同理可得,OD=1,OE=1,DE=2, 连接OD, ∵CE===2, ∴边CD===2, 故选D. 二、填空题(每小题3分,满分18分) 13.解:(1﹣)÷ = = =x+1, 14.(x+1)(x﹣2). 15.解:DF∥AC,或∠BFD=∠A. 理由:∵∠A=∠A, ==, ∴△ADE∽△ACB, ∴①当DF∥AC时,△BDF∽△BAC, ∴△BDF∽△EAD. ②当∠BFD=∠A时,∵∠B=∠AED, ∴△FBD∽△AED. 故答案为DF∥AC,或∠BFD=∠A. 16.解:∵关于x的一元二次方程kx2﹣2x+1=0有实数根, ∴△=b2﹣4ac≥0, 即:4﹣4k≥0, 解得:k≤1, ∵关于x的一元二次方程kx2﹣2x+1=0中k≠0, 故k≤1且k≠0. 17.解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成, ∴正方形和等边三角形的和=6+6=12=9+3; ∵第2个图由11个正方形和10个等边三角形组成, ∴正方形和等边三角形的和=11+10=21=9×2+3; ∵第3个图由16个正方形和14个等边三角形组成, ∴正方形和等边三角形的和=16+14=30=9×3+3, …, ∴第n个图中正方形和等边三角形的个数之和=9n+3. 18.解:设BE=a,则BC=3a, 由题意可得, CB=CB′,CD=CD′,BE=B′E=a, ∵B′D′=2, ∴CD′=3a﹣2, ∴CD=3a﹣2, ∴AE=3a﹣2﹣a=2a﹣2, ∴DB′===2, ∴AB′=3a﹣2, ∵AB′2+AE2=B′E2, ∴, 解得,a=或a=, 当a=时,BC=2, ∵B′D′=2,CB=CB′, ∴a=时不符合题意,舍去; 当a=时,BC=5,AB=CD=3a﹣2=3, ∴矩形纸片ABCD的面积为:5×3=15,  四、 解答题 19.解:(1)抽取的学生数:16÷40%=40(人); 抽取的学生中合格的人数:40﹣12﹣16﹣2=10, 合格所占百分比:10÷40=25%, 优秀人数:12÷40=30%, 如图所示: ; (2)成绩未达到良好的男生所占比例为:25%+5%=30%, 所以600名九年级男生中有600×30%=180(名); (3)如图: , 可得一共有9种可能,甲、乙两人恰好分在同一组的有3种, 所以甲、乙两人恰好分在同一组的概率P==. 20.解:设每层楼高为x米, 由题意得:MC′=MC﹣CC′=2.5﹣1.5=1米, ∴DC′=5x+1,EC′=4x+1, 在Rt△DC′A′中,∠DA′C′=60°, ∴C′A′==(5x+1), 在Rt△EC′B′中,∠EB′C′=30°, ∴C′B′==(4x+1), ∵A′B′=C′B′﹣C′A′=AB, ∴(4x+1)﹣(5x+1)=14, 解得:x≈3.17, 则居民楼高为5×3.17+2.5≈18.4米. 21.解:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨. 由题意, 解得, 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨. (2)设精加工m吨,总利润为w元,则粗加工吨. 由m≤3,解得m≤75, 利润w=1000m+400=600m+40000, ∵600>0, ∴w随m的增大而增大, ∴m=75时,w有最大值为85000元. 22.(1)证明:连接OD, ∵D为的中点, ∴∠CAD=∠BAD, ∵OA=OD, ∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∵DE⊥AC, ∴∠E=90°, ∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°, ∴OD⊥EF, ∴EF为半圆O的切线; (2)解:连接OC与CD, ∵DA=DF, ∴∠BAD=∠F, ∴∠BAD=∠F=∠CAD, 又∵∠BAD+∠CAD+∠F=90°, ∴∠F=30°,∠BAC=60°, ∵OC=OA, ∴△AOC为等边三角形, ∴∠AOC=60°,∠COB=120°, ∵OD⊥EF,∠F=30°, ∴∠DOF=60°, 在Rt△ODF中,DF=6, ∴OD=DF•tan30°=6, 在Rt△AED中,DA=6,∠CAD=30°, ∴DE=DA•sin30,EA=DA•cos30°=9, ∵∠COD=180°﹣∠AOC﹣∠DOF=60°, ∴CD∥AB, 故S△ACD=S△COD, ∴S阴影=S△AED﹣S扇形COD=×9×3﹣π×62=﹣6π. 23.解: (1)如图所示: 设裁掉的正方形的边长为xdm, 由题意可得(10﹣2x)(6﹣2x)=12, 即x2﹣8x+12=0,解得x=2或x=6(舍去), 答:裁掉的正方形的边长为2dm,底面积为12dm2; (2)∵长不大于宽的五倍, ∴10﹣2x≤5(6﹣2x),解得0<x≤2.5, 设总费用为w元,由题意可知 w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24, ∵对称轴为x=6,开口向上, ∴当0<x≤2.5时,w随x的增大而减小, ∴当x=2.5时,w有最小值,最小值为25元, 答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元. 24.解:(1)当CC'=时,四边形MCND'是菱形. 理由:由平移的性质得,CD∥C'D',DE∥D'E', ∵△ABC是等边三角形, ∴∠B=∠ACB=60°, ∴∠ACC'=180°﹣∠ACB=120°, ∵CN是∠ACC'的角平分线, ∴∠D'E'C'=∠ACC'=60°=∠B, ∴∠D'E'C'=∠NCC', ∴D'E'∥CN, ∴四边形MCND'是平行四边形, ∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°, ∴△MCE'和△NCC'是等边三角形, ∴MC=CE',NC=CC', ∵E'C'=2, ∵四边形MCND'是菱形, ∴CN=CM, ∴CC'=E'C'=; (2)①AD'=BE', 理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE', 由(1)知,AC=BC,CD'=CE', ∴△ACD'≌△BCE', ∴AD'=BE', 当α=180°时,AD'=AC+CD',BE'=BC+CE', 即:AD'=BE', 综上可知:AD'=BE'. ②如图连接CP, 在△ACP中,由三角形三边关系得,AP<AC+CP, ∴当点A,C,P三点共线时,AP最大, 如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=, ∴CP=3, ∴AP=6+3=9, 在Rt△APD'中,由勾股定理得,AD'==2. 25.解: (1)由题意可得,解得, ∴抛物线解析式为y=﹣x2+2x+3; (2)∵A(0,3),D(2,3), ∴BC=AD=2, ∵B(﹣1,0), ∴C(1,0), ∴线段AC的中点为(,), ∵直线l将平行四边形ABCD分割为面积相等两部分, ∴直线l过平行四边形的对称中心, ∵A、D关于对称轴对称, ∴抛物线对称轴为x=1, ∴E(3,0), 设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得, ∴直线l的解析式为y=﹣x+, 联立直线l和抛物线解析式可得,解得或, ∴F(﹣,), 如图1,作PH⊥x轴,交l于点M,作FN⊥PH, ∵P点横坐标为t, ∴P(t,﹣t2+2t+3),M(t,﹣t+), ∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+, ∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×, ∴当t=时,△PEF的面积最大,其最大值为×, ∴最大值的立方根为=; (3)由图可知∠PEA≠90°, ∴只能有∠PAE=90°或∠APE=90°, ①当∠PAE=90°时,如图2,作PG⊥y轴, ∵OA=OE, ∴∠OAE=∠OEA=45°, ∴∠PAG=∠APG=45°, ∴PG=AG, ∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去), ②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK, 则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t, ∵∠APQ+∠KPE=∠APQ+∠PAQ=90°, ∴∠PAQ=∠KPE,且∠PKE=∠PQA, ∴△PKE∽△AQP, ∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去), 综上可知存在满足条件的点P,t的值为1或. 2021年12月24日 青岛市2 年高三统一质量检测 数学试题2 .04 全卷满分150 分.考试用时120分钟。 一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i是虚数单位,复数则z的共轭复数z的虚部为 A. –iB.1C. iD. -1 2.已知集合,集合B={x∈R||x-1|<2}, 则A∩B= A. (0,3)B. (-1,3)C. (0,4)D. (-∞,3) 3.已知某市居民在2021年用于 支付的个人消费额(单位:元)服从正态分布则该市某居民 支付的消费额在(1900, 2200)内的概率为 附:随机变量服从正态分布则P(μ-σ<ξ<μ+σ)= 0.6826, , P(μ- 3σ<ξ<μ+3σ)= 0.9974 . 4.设sin2则a, b,c的大小关系正确的是 A. a>b> cB. b>a> cC. b>c>aD. c>a>b 5.已知函数为自然对数的底数),若f(x)的零点为α,极值点为β,则α+β= A.-1 6.已知四棱锥P-ABCD的所有棱长均相等,点E,F分别在线段PA, PC上,且EF//底面ABCD,则异面直线EF与PB所成角的大小为 A.30°B.45°C.60°D.90° 7.在同一直角坐标系下,已知双曲线C:的离心率为双曲线C的一个焦点到一条渐近线的距离为2,函数的图象向右平移单位后得到曲线D,点A,B分别在双曲线C的下支和曲线D上,则线段AB长度的最小值为 A.2D.1 8.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型” 、“升级题型” 、“创新题型”三类题型,每类题型均指定一道题让参赛者回答。已知某位参赛者答对每道题的概率均为且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率 二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。 9.已知向量设的夹角为θ,则 D. θ=135° 10.已知函数x∈R,则 A. -2≤f(x)≤2B. f(x) 在区间(0,π)上只有1个零点 C. f(x) 的最小正周期为π为f(x)图象的一条对称轴 11.已知数列的前n项和为S数列的前n项和为则下列选项正确的为 A.数列是等差数列B.数列是等比数列 C.数列的通项公式为12.已知四棱台的上下底面均为正方形,其中则下述正确的是 A.该四棱合的高为 C.该四棱台的表面积为26D.该四棱合外接球的表面积为16π 三、填空题:本题共4个小题,每小题5分,共20分。 13.若∀x恒成立,则实数a的取值范围为____ 14.已知函数f(x)的定义域为R,f(x+1)为奇函数, f(0)=1, 则f(2)=____ 15. 已知a∈N,二项式展开式中含有项的系数不大于240,记a的取值集合为A,则由集合A中元素构成的无重复数字的三位数共有______个 . 16.2 年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:Q(0,-3)是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切。已知直线l过点O . (1) 若直线l与圆L、圆S均相切,则l截圆Q所得弦长为____ ; (2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则d=____. (本题第一个空2分,第二个空3分) 四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。 17.(10分) 设等差数列的前n项和为等比数列的前n项和为已知n∈N*. (1)求的通项公式; (2)是否存在正整数k,使得且?若存在,求出k的值;若不存在,请说明理由。 18.(12分) 在△ABC中, a, b, c分别为内角A, B, C的对边,. (1)求角C ; (2)若D为BC中点,在下列两个条件中任选一个,求AD的长度。 条件①:△ABC 的面积S=4且B> A; 条件②: 注:如果选择两个条件分别解答,按第一个解答计分。 19. (12 分) 在如图所示的四棱锥E-ABCD中,四边形ABCD为平行四边形,△BCE为边长为2的等边三角形,AB=AE,点F,O分别为AB, BE的中点, OF是异面直线AB和OC的公垂线。 (1)证明:平面ABE⊥平面BCE; (2)记OCDE的重心为G,求直线AG与平面ABCD所成角的正弦值. 20. (12 分) 某网络购物平台每年11月11日举行“双十一”购物节,当天有多项优惠活动,深受广大消费者喜爱。 (1)已知该网络购物平台近5年“双十”购物节当天成交额如下表: 年份 2021 2021 2021 2021 2021 成交额(百亿元) 9 12 17 21 27 求成交额y (百亿元) 与时间变量x (记2021 年为x=1, 2021年为x=2,……依次类推)的线性回归方程,并预测2 年该平台“双十一”购物节当天的成交额(百亿元) ; (2)在2 年“双十一”购物节前,某同学的爸爸、妈妈计划在该网络购物平台.上分别参加A、B两店各一个订单的“秒杀”抢购,若该同学的爸爸、妈妈在A、B两店订单“秒杀”成功的概率分别为p、q,记该同学的爸爸和妈妈抢购到的订单总数量为X . ( i)求X的分布列及E(X); (ii)已知每个订单由k(k≥2,k∈N* )件商品W构成,记该同学的爸爸和妈妈抢购到的商品W总数量为Y,假设,求E(Y)取最大值时正整数k的值. 附:回归方程中斜率和截距的最小二乘估计公式分别为: . 21. (12 分) 已知O为坐标原点,椭圆C的左,右焦点分别为点又恰为抛物线D的焦点,以为直径的圆与椭圆C仅有两个公共点. (1)求椭圆C的标准方程; (2) 若直线l与D相交于A,B两点,记点A,B到直线x=-1的距离分别为直线l与C相交于E,F两点,记△OAB,△OEF 的面积分别为 (i)证明:的周长为定值; (ii)求的最大值. 22. (12 分) 已知函数的图象在点(1,1)处的切线方程为y=1. (1)当x∈(0,2)时,证明: 0< f(x)<2; (2)设函数g(x)=xf(x),当x∈(0,1)时,证明: 0<g(x)<1 ; (3)若数列满足:.证明: 2021年山东省烟台市中考数学试卷 一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。 1.(3分)﹣的倒数是(  ) A.3B.﹣3C.D.﹣ 2.(3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是(  ) A.B.C.D. 3.(3分)2021年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为(  ) A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014 4.(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为(  ) A.9B.11C.14D.18 5.(3分)甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示: 甲 乙 丙 丁 平均数(cm) 177 178 178 179 方差 0.9 1.6 1.1 0.6 哪支仪仗队的身高更为整齐?(  ) A.甲B.乙C.丙D.丁 6.(3分)下列说法正确的是(  ) A.367人中至少有2人生日相同 B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是 C.天气预报说明天的降水概率为90%,则明天一定会下雨 D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖 7.(3分)利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b的大小关系为(  ) A.a<bB.a>bC.a=bD.不能比较 8.(3分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为(  ) A.28B.29C.30D.31 9.(3分)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为(  ) A.7B.6C.5D.4 10.(3分)如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为(  ) A.56°B.62°C.68°D.78° 11.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是(  ) A.①③B.②③C.②④D.③④ 12.(3分)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是(  ) A.B.C.D. 二、填空题(本大题共6个小题,每小题3分,满分18分) 13.(3分)(π﹣3.14)0+tan60°=. 14.(3分)与最简二次根式5是同类二次根式,则a=. 15.(3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=. 16.(3分)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为. 17.(3分)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是. 18.(3分)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=. 三、解答题(本大题共7个小题,满分66分) 19.(6分)先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0. 20.(8分)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题: (1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为; (2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”; (3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率. 21.(8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90) 22.(9分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元. (1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆? (2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆? 23.(10分)如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为上一点,连接FE并延长交AC的延长线于点N,交AB于点M. (1)若∠EBD为α,请将∠CAD用含α的代数式表示; (2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线; (3)在(2)的条件下,若AD=,求的值. 24.(11分)【问题解决】 一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗? 小明通过观察、分析、思考,形成了如下思路: 思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数; 思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数. 请参考小明的思路,任选一种写出完整的解答过程. 【类比探究】 如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数. 25.(14分)如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D. (1)求直线和抛物线的表达式; (2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值; (3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由. 2021年山东省烟台市中考数学试卷 参考答案与试题解析 一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的。 1.(3分)﹣的倒数是(  ) A.3B.﹣3C.D.﹣ 【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数. 【解答】解:﹣的倒数是﹣3, 故选:B. 【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键. 2.(3分)在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是(  ) A.B.C.D. 【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误; B、是轴对称图形,也是中心对称图形,故此选项错误; C、不是轴对称图形,是中心对称图形,故此选项正确; D、是轴对称图形,也是中心对称图形,故此选项错误. 故选:C. 【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 3.(3分)2021年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为(  ) A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:82.7万亿=8.27×1013, 故选:C. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.(3分)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为(  ) A.9B.11C.14D.18 【分析】由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得. 【解答】解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11, 故选:B. 【点评】本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果. 5.(
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服