资源描述
材料力学重点总结全面版资料
材料力学阶段总结
一. 材料力学的一些基本概念
1. 材料力学的任务:
解决安全可靠与经济适用的矛盾。
研究对象:杆件
强度:抵抗破坏的能力
刚度:抵抗变形的能力
稳定性:细长压杆不失稳。
2. 材料力学中的物性假设
连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念
材力与理力:平衡问题,两者相同;
理力:刚体,材力:变形体。
内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力
应变:反映杆件的变形程度
变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系
虎克定律;剪切虎克定律:
适用条件:应力~应变是线性关系:材料比例极限以内。
5. 材料的力学性能(拉压):
一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E,剪切弹性模量G,泊松比v,
塑性材料与脆性材料的比较:
变形
强度
抗冲击
应力集中
塑性
材料流动、断裂变形明显
拉压的基本相同
较好地承受冲击、振动
不敏感
脆性
无流动、脆断
仅适用承压
非常敏感
6. 安全系数、 许用应力、工作应力、应力集中系数
安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料
脆性材料
7. 材料力学的研究方法
1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。运用力学原理分析计算。
寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1) 拉(压)杆的平面假设
实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2) 圆轴扭转的平面假设
实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。
3) 纯弯曲梁的平面假设
实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
9 小变形和叠加原理
小变形:
① 梁绕曲线的近似微分方程
② 杆件变形前的平衡
③ 切线位移近似表示曲线
④ 力的独立作用原理
叠加原理:
① 叠加法求内力
② 叠加法求变形。
10 材料力学中引入和使用的的工程名称及其意义(概念)
1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载。
2) 单元体,应力单元体,主应力单元体。
3) 名义剪应力,名义挤压力,单剪切,双剪切。
4) 自由扭转,约束扭转,抗扭截面模量,剪力流。
5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量。
6) 相当应力,广义虎克定律,应力圆,极限应力圆。
7) 欧拉临界力,稳定性,压杆稳定性。
8)动荷载,交变应力,疲劳破坏。
二. 杆件四种基本变形的公式及应用
1. 四种基本变形:
基本变形
截面几何
性质
刚度
应力公式
变形公式
备注
拉伸与压缩
面积:A
抗拉(压)
刚度 EA
注意变截面及
变轴力的情况
剪切
面积:A
——
——
实用计算法
圆轴扭转
极惯性矩
抗扭刚度
纯弯曲
惯性矩
抗弯刚度
挠度y
转角
2. 四种基本变形的刚度,都可以写成:
刚度 = 材料的物理常数×截面的几何性质
1)物理常数:
某种变形引起的正应力:抗拉(压)弹性模量E;
某种变形引起的剪应力:抗剪(扭)弹性模量G。
2)截面几何性质:
拉压和剪切:变形是截面的平移: 取截面面积 A;
扭转:各圆截面相对转动一角度或截面绕其形心转动:
取极惯性矩;
梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩。
3. 四种基本变形应力公式都可写成:
应力=
对扭转的最大应力:截面几何性质取抗扭截面模量
对弯曲的最大应力:截面几何性质取抗弯截面模量
4. 四种基本变形的变形公式,都可写成:
变形=
因剪切变形为实用计算方法,不考虑计算变形。
弯曲变形的曲率 ,一段长为 l 的纯弯曲梁有:
补充与说明:
1、关于“拉伸与压缩”
指简单拉伸与简单压缩,即拉力或压力与杆的轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲的组合变形问题;杆的压缩问题,要注意它的长细比(柔度)。这里的简单压缩是指“小柔度压缩问题”。
2、关于“剪切”
实用性的强度计算法,作了剪应力在受剪截面上均匀分布的假设。要注意有不同的受剪截面:
a.单面受剪:
受剪面积是铆钉杆的横截面积;
b.双面受剪:
受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积。
c.圆柱面受剪:
受剪面积以冲头直径d为直径,冲板厚度 t 为高的圆柱面面积。
3.关于扭转
表中公式只实用于圆形截面的直杆和空心圆轴。等直圆杆扭转的应力和变形计算公式可近似分析螺旋弹簧的应力和变形问题是应用杆件基本变形理论解决实际问题的很好例子。
4.关于纯弯曲
纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立。
横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中使用。
5.关于横力弯曲时梁截面上剪应力的计算问题
为计算剪应力,作为初等理论的材料力学方法作了一些巧妙的假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:
1) 无论作用于梁上的是集中力还是分布力,在梁的宽度上都是均匀分布的。故剪应力在宽度上不变,方向与荷载(剪力)平行。
2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有,因 的函数形式未知,无法积分。但由剪应力互等定理,考虑微梁段左、右内力的平衡,可以得出:
剪应力在横截面上沿高度的变化规律就体现在静矩上, 总是正的。
剪应力公式及其假设:
a.矩形截面
假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q的方向一致;
假设2:横截面上同一层高上的剪应力相等。
剪应力公式:
,
b. 非矩形截面积
假设1: 同一层上的剪应力作用线通过这层两端边界的切线交点,剪应力的方向与剪力的方向。
假设2:同一层上的剪应力在剪力Q方向上的分量相等。
剪应力公式:
c.薄壁截面
假设1:剪应力与边界平行,与剪应力谐调。
假设2:沿薄壁t,均匀分布。 剪应力公式:
学会运用“剪应力流”概念确定截面上剪应力的方向。
三.梁的内力方程,内力图,挠度,转角
¨ 遵守材料力学中对剪力 Q 和弯矩 M 的符号规定。
¨ 在梁的横截面上,总是假定内力方向与规定方向一致,从统一的坐标原点出发划分梁的区间,且把梁的坐标原点放在梁的左端(或右端),使后一段的弯矩方程中总包括前面各段。
¨ 均布荷载 q、剪力Q、弯矩M、转角θ、挠度 y 间的关系:
由: ,
有
设坐标原点在左端,则有:
: , q 为常值
:
其中A、B、C、D四个积分常数由边界条件确定。
例如,如图示悬臂梁:
则边界条件为:
截面法求内力方程:
内力是梁截面位置的函数,内力方程是分段函数,它们以集中力偶的作用点,分布的起始、终止点为分段点;
1) 在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;
2) 在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;
3) 剪力等于脱离梁段上外力的代数和。脱离体截面以外另一端,外力的符号同剪力符号规定,其他外力与其同向则同号,反向则异号;
4) 弯矩等于脱离体上的外力、外力偶对截面形心截面形心的力矩的代数和。外力矩及外力偶的符号依弯矩符号规则确定。
梁内力及内力图的解题步骤:
1) 建立坐标,求约束反力;
2) 划分内力方程区段;
3) 依内力方程规律写出内力方程;
4) 运用分布荷载q、剪力Q、弯矩M的关系作内力图;
关系:
规定:①荷载的符号规定:分布荷载集度 q 向上为正;
②坐标轴指向规定:梁左端为原点,x 轴向右为正。
剪力图和弯矩图的规定:剪力图的 Q 轴向上为正,弯矩图的 M 轴向下为正。
5) 作剪力图和弯矩图:
① 无分布荷载的梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);
② 有分布荷载的梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);
③ Q=0的截面,弯矩可为极值;
④ 集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图的斜率也突变,弯矩图有尖角;
⑤ 集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;
⑥ 在剪力为零,剪力改变符号,和集中力偶作用的截面(包括梁固定端截面),确定最大弯矩();
⑦ 指定截面上的剪力等于前一截面的剪力与该两截面间分布荷载图面积值的和;指定截面积上的弯矩等于前一截面的弯矩与该两截面间剪力图面积值的和。
共轭梁法求梁的转角和挠度:
要领和注意事项:
1) 首先根据实梁的支承情况,确定虚梁的支承情况
2) 绘出实梁的弯矩图,作为虚梁的分布荷载图。特别注意:实梁的弯矩为正时,虚分布荷载方向向上;反之,则向下。
3) 虚分布荷载 的单位与实梁弯矩 单位相同,虚剪力的单位则为 ,虚弯矩的单位是
4) 由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等。计算时需要这些图形的面积和形心位置。
叠加法求梁的转角和挠度:
各荷载对梁的变形的影响是独立的。当梁同时受n种荷载作用时,任一截面的转角和挠度可根据线性关系的叠加原理,等于荷载单独作用时该截面的转角或挠度的代数和。
四. 应力状态分析
1.单向拉伸和压缩
应力状态划分为单向、二向和三向应力状态。是根据一点的三个主应力的情况而确定的。
如: , 单向拉伸
有:,
主应力只有,但就应变,三个方向都存在。
若沿 和 取出单元体,则在四个截面上的应力为:
看起来似乎为二向应力状态,其实是单向应力状态。
2.二向应力状态.
有三种具体情况需注意
1) 已知两个主应力的大小和方向,求指定截面上的应力
由任意互相垂直截面上的应力,求另一任意斜截面上的应力
由任意互相垂直截面上的应力,求这一点的主应力和主方向
(角度 和 均以逆时针转动为正)
2) 二向应力状态的应力圆
应力圆在分析中的应用:
a) 应力圆上的点与单元体的截面及其上应力一一对应;
b) 应力圆直径两端所在的点对应单元体的两个相互垂直的面;
c) 应力圆上的两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角的两倍2;
d) 应力圆与正应力轴的两交点对应单元体两主应力;
e) 应力圆中过圆心且平行剪应力轴而交于应力圆的两点为最大、最小剪应力及其作用面。
极点法:确定主应力及最大(小)剪应力的方向和作用面方向。
3) 三方向应力状态,三向应力圆,一点的最大应力(最大正应力、最大剪应力)
广义虎克定律:
弹性体的一个特点是,当它在某一方向受拉时,与它垂直的另外方向就会收缩。反之,沿一个方向缩短,另外两个方向就拉长。
主轴方向:
或
非主轴方向:
体积应变:
五. 强度理论
.
强度理论可以写成如下统一形式:
其中::相当应力,由三个主应力根据各强度理论按一定形式组合而成。
:许用应力,,:单向拉伸时的极限应力,n:安全系数。
1) 最大拉应力理论(第一强度理论)
, 一般:
2) 最大伸长线应变理论(第二强度理论)
,一般:
3) 最大剪应力理论(第三强度理论)
, 一般:
4) 形状改变比能理论(第四强度理论)
, 一般:
5) 莫尔强度理论
, , :材料抗拉极限应力
强度理论的选用:
1) 一般,
脆性材料应采用第一和第二强度理论;
塑性材料应采用第三和第四强度理论。
2) 对于抗拉和抗压强度不同的材料,可采用最大拉应力理论
3) 三向拉应力接近相等时,宜采用最大拉应力理论;
4) 三向压应力接近相等时,宜应用第三或第四强度理论。
材料服 从虎克定律且杆件形变很小,则各基本形变在杆件内引起的应力和形变可以进行叠加,即叠加原理或力作用的独立性原理。
分析计算组合变形问题的要领是分与合:
分:即将同时作用的几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应力和位移。
合:即将各基本变形引起的应力和位移叠加,一般是几何和。
分与合过程中发现的概念性或规律性的东西要概念清楚、牢记。
斜弯曲:
平面弯曲时,梁的挠曲线是荷载平面内的一条曲线,故称平面弯曲;斜弯曲时,梁的挠曲线不在荷载平面内,所以称斜弯曲。
斜弯曲时几个角度间的关系要清楚:
力作用角(力作用平面):
斜弯曲中性轴的倾角:
斜弯曲挠曲线平面的倾角:
即:挠度方向垂直于中性轴
一般,即:挠曲线平面与荷载平面不重合。
强度刚度计算公式:
拉(压)与弯曲的组合:
拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别
偏心拉压问题,有时要求截面上下只有一种应力,这时载荷的作用中心与截面形心不能差得太远,而只能作用在一个较小的范围内这个范围称为截面的核心。
强度计算公式及截面核心的求解:
扭转与弯曲的组合形变:
机械工程中常见的一种杆件组合形变,故常为圆轴。
分析步骤:
根据杆件的受力情况分析出扭矩和弯矩和剪力。
找出危险截面:即扭矩和弯矩均较大的截面。由扭转和弯曲形变的特点,危险点在轴的表面。
剪力产生的剪应力一般相对较小而且在中性轴上(弯曲正应力为零)。一般可不考虑剪力的作用。
弯扭组合一般为复杂应力状态,应采用合适的强度理论作强度分析,强度计算公式:
扭转与拉压的组合:
杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析。
强度计算公式
七.超静定问题:
求解简单超静定梁主要有三个步骤:
1) 解得超静定梁的多余约束而以其反力代替;
2) 求解原多余约束处由已知荷载及“多余”约束反力产生的变形;
3) 由原多余支座处找出变形协调条件,重立补充方程。
能量法求超静定问题:
卡氏第一定理:应变能对某作用力作用点上该力作用方向上的位移的偏导数等于该作用力,即:
注1:卡氏第一定理也适用于非线性弹性体;
注2:应变能必须用诸荷载作用点的位移来表示。
卡氏第二定理:线弹性系统的应变能对某集中荷载的偏导数等于该荷载作用点上沿该荷载方向上的位移,即
若系统为线性体,则:
注1: 卡氏第二定理仅适用于线弹性系统;
卡氏第二定理的应变能须用独立荷载表示。
注2: 用卡氏定理计算,若得正号,表示位移与荷载同向;若得负号,表示位移与荷载反向。计算的正负与坐标系无关。
八. 压杆稳定性的主要概念
压杆失稳破坏时横截面上的正应力小于屈服极限(或强度极限),甚至小于比例极限。即失稳破坏与强度不足的破坏是两种性质完全不同的破坏。
临界力是压杆固有特性,与材料的物性有关(主要是E),主要与压杆截面的形状和尺寸,杆的长度,杆的支承情况密切相关。
计算临界力要注意两个主惯性平面内惯矩 I 和长度系数 μ 的对应。
压杆的长细比或柔度表达了欧拉公式的运用范围。细长杆(大柔度杆)运用欧拉公式判定杆的稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线经验公式是最简单实用的一种。
折剪系数ψ 是柔度 λ 的函数,这是因为柔度不同,临界应力也不同。且柔度不同,安全系数也不同。
压杆稳定性的计算公式:欧拉公式及ψ系数法(略)
九. 动荷载、交变应力及疲劳强度
基本原理和基本方法:
1) 动静法,其依据是达朗贝尔原理。这个方法把动荷的问题转化为静荷的问题。
2) 能量分析法,其依据是能量守恒原理。这个方法为分析复杂的冲击问题提供了简略的计算手段。在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理的结果。
¨ 构件作等加速运动或等角速转动时的动载荷系为:
这个式子是动荷系数的定义式,它给出了 的内涵和外延。 的计算式,则要根据构件的具体运动方式,经分析推导而定。
¨ 构件受冲击时的冲击动荷系数 为:
这个式子是冲击动荷系数的定义式,其计算式要根据具体的冲击形式经分析推导而定。
两个中包含丰富的内容。它们不仅能给出动的量与静的量之间的相互关系,而且包含了影响动载荷和动应力的主要因素,从而为寻求降低动载荷对构件的不利影响的方法提供了思路和依据。
2. 交变应力与疲劳失效
基本概念:应力循环,循环周期,最大、最小循环应力,循环特征(应力比),持久极限,条件持久极限,应力集中系数,构件的尺寸系数,表面质量系数,持久极限曲线等。
应力寿命曲线:表示一定循环特征下标准试件的疲劳强度与疲劳寿命之间关系的曲线,称应力寿命曲线,也称S—N曲线:
持久极限曲线:
构件的工作安全系数:
构件的疲劳强度条件为:
十.平面图形的几何性质:
1.静矩:平面图形面积对某坐标轴的一次矩。
定义式:
,
量纲为长度的三次方。
2. 惯性矩:平面图形对某坐标轴的二次矩。
,
量纲为长度的四次方,恒为正。相应定义:惯性半径
,
为图形对 轴和对 轴的惯性半径。
3. 极惯性矩:
因为
所以极惯性矩与(轴)惯性矩有关系:
4. 惯性积:
定义为图形对一对正交轴 、 轴的惯性积。量纲是长度的四次方。 可能为正,为负或为零。
5. 平行移轴公式
6. 转轴公式:
7. 主惯性矩的计算公式:
截面图形的几何性质都是对确定的坐标系而言的,通过任意一点都有主轴。在强度、刚度和稳定性研究中均要进行形心主惯性矩的计算。
第一章 绪论及基本概念
一、教学目标和教学内容
教学目标:明确材料力学的任务,理解变形体的的基本假设,掌握杆件变形的基本形式。
教学内容:
材料力学的特点
材料力学的任务
材料力学的研究对象
变形体的基本假设
材料力学的基本变形形式
二、重点难点
构件的强度、刚度、稳定性的概念;杆件变形的基本形式、变形体的基本假设。
三、教学方式
采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、建议学时
0.5学时
五、讲课提纲
1、材料力学的任务
材料力学是研究构件强度、刚度和稳定性计算的学科。
工程中各种机械和结构都是由许多构件和零件组成的。为了保证机械和结构能安全正常地工作,必须要求全部构件和零件在外力作用时具有一定的承载能力,承载能力表现为
强度是指构件抵抗破坏的能力。构件在外力作用下不被破坏,表明构件具有足够的强度。
刚度是指构件抵抗变形的能力。构件在外力作用下发生的变形不超过某一规定值,表明构件具有足够的刚度。
稳定性是指构件承受在外力作用下,保持原有平衡状态的能力,构件在外力作用下,能保持原有的平衡形态,表明构件具有足够的稳定性。
材料力学的任务:以最经济为代价,保证构件具有足够的承载能力。通过研究构件的强度、刚度、稳定性,为构件选择合适的材料、确定合理的截面形状和尺寸提供计算理论。
2、材料力学的研究对象:可变形固体
¨均匀连续性假设: 假设变形固体内连续不断地充满着均匀的物质,且体内各点处的力学性质相同。
¨各向同性假设: 假设变形固体在各个方向上具有相同的力学性质。
¨小变形假设: 假设变形固体在外力作用下产生的变形与构件原有尺寸相比是很微小的,称“小变形”。在列平衡方程时,可以不考虑外力作用点处的微小位移,而按变形前的位置和尺寸进行计算。
3、杆件的几何特征
3.1轴线:截面形心的连线
3.2横截面:垂直于轴线的截面
3.3杆的分类:
4、杆件变形的基本形式
杆件在不同受力情况下,将产生各种不同的变形,但是,不管变形如何复杂,常常是四种基本变形(轴向拉压、剪切、扭转、弯曲)或是它们的组合。
第二章 轴向拉伸和压缩
一、教学目标和教学内容
1、教学目标
正确理解内力、应力、应变等基本概念,熟练掌握截面法。正确理解并熟练掌握轴向拉压正应力公式、胡克定律、强度条件,掌握拉压杆的强度计算方法。掌握拉压时材料的力学性能,弄清材料力学解决问题的思路和方法。
2、教学内容
截面法、内力、应力
轴力、 轴力图
正应力、应力集中的概念
轴向拉(压)时斜截面上的应力
拉压杆的变形、胡克定律、泊松比
⑥拉压杆的强度计算
⑦材料拉压时的力学性能
⑧拉压杆件系统的超静定问题
二、重点难点
1、内力和截面法,轴力和轴力图。
2、 应力的概念,轴向拉压时横截面上的应力,轴向拉压时的变形。
3、 材料拉、压时的力学性能。
4、 轴向拉压的强度计算。
5、 应力集中的概念,拉、压静不定问题。
三、教学方式
采用启发式教学和问题式教学法结合,通过提问,引导学生思考,让学生回答问题,激发学生的学习热情。
四、建议学时
7 学时
五、讲课提纲
轴向拉伸(压缩)的概念
受力特点:作用于杆件上外力或外力合力的作用线与杆件轴线重合。
变形特点:构件沿轴线方向的伸长或缩短。
轴力、 轴力图
1、内力 、 截面法
内力的概念
内力是构件因受外力而变形,其内部各部分之间因相对位移改变而引起的附加内力。
截面法
截面法四部曲: 截(切开)、取(取分离体)、代(代替)、平(平衡)
2、轴力、 轴力图
轴向拉压时的内力—— 轴力
轴力的符号规则——轴力背离截面时为正,指向截面为负。
轴力图
应力与圣维南原理
1、应力的概念:
定义:内力在截面上的分布集度。
数学表示:
应力分量;
正应力的代数符号规定:拉应力为正,压应力为负。
应力的单位: Pa(N/m2)
2、轴向拉(压)时横截面上的正应力:
应力计算公式:
公式的适用范围:
(1)外力作用线必须与杆轴线重合,否则横截面上应力将不是均匀分布;
(2) 距外力作用点较远部分正确,外力作用点附近应力分布复杂,由于加载方式的不同,只会使作用点附近不大的范围内受到影响(圣维南原理)。因此,只要作用于杆端合力作用线与杆轴线重合,除力作用处外,仍可用该公式计算。
(3) 必须是等截面直杆,否则横截面上应力将不是均匀分布,当截面变化较缓慢时,可近似用该公式计算。
3、圣维南原理:外力作用在杆端的方式不同,只会使杆端距离不大于横向尺寸的范围内应力分布受到影响。
4、轴向拉(压)杆斜截面上的应力
变形、胡克定律、泊松比
1、纵向变形、胡克定律:
绝对变形
胡克定律
E——弹性模量(Pa) —抗拉(压)刚度,反映杆件抵抗拉伸(压缩)变形的能力
相对变形(线应变)
拉伸为“+”,压缩为“-”
在弹性范围内: 胡克定律
2、横向变形及泊松比:
绝对变形
横向尺寸
相对变形(横向应变)
拉伸为“-”,压缩为“+”
柏松比(横向变形系数)
实验表明:在弹性范围内
是反映材料性质的常数,由实验确定,一般在-1 ~之间。
材料在拉伸和压缩时的力学性能
1、低碳钢拉伸时的力学性能:
试件:
圆截面:
矩形截面:
—工作段长度(标距) —直径 —横截面积
低碳钢拉伸时变形发展的四个阶段:
(1)弹性阶段(oa)
应力特征值:比例极限—材料应力应变成正比的最大应力值(服从虎克定律)
弹性极限—材料只出现弹性变形的应力极限值
成比
(比例系数)
E为与材料有关的比例常数,随材料不同而异。当时,,由此说明表明材料的刚性的大小;说明几何意义。
(2)屈服阶段(bc)
当应力超过弹性极限后,应变增加很快,但应力仅在一微小范围波动,这种应力基本不变,应变不断增加,从而明显地产生塑性变形的现象称为屈服(流动)。
现象:磨光试件表面出现与轴线成45°倾角条纹——滑移线,是由于材料晶格发生相对滑移所造成。
材料产生显著塑性变形,影响构件正常使用,应避免出现。
应力特征值:屈服极限——衡量材料强度的重要指标
(3)强化阶段(cd)
强化现象:材料恢复抵抗变形的能力,要使应变增加,必须增大应力值。曲线表现为上升阶段。
应力特征性:强度极限——材料能承受的最大应力值。
冷作硬化——材料预拉到强化阶段,使之发生塑性变形,然后卸载,当再次加载时弹性极限和屈服极限提高、塑性降低的现象。
(4)颈缩阶段(df)
在某一局部范围内,A (急剧)、e ,用A计算的s , 试件被拉断。
两个塑性指标:
延伸率(伸长率): 材料分类
截面收缩率:
2、其它材料拉伸时的力学性能:
16Mn钢也有明显的四个阶段;H62(黄铜)没有明显的屈服阶段,另三阶段较明显;T10A(高碳钢)没有屈服和颈缩阶段,只有弹性和强化阶段。铸铁拉伸时是一微弯曲线,没有明显的直线部分,拉断前无屈服现象,拉断时变形很小是典型的脆性材料。
对于没有明显的屈服阶段的材料,常以产生0.2%的塑性变形所对应的应力值作为屈服极限,称条件屈服极限,用表示。
3、材料压缩时的力学性能:
低碳钢压缩时的力学性能:
压缩时曲线,在屈服阶段以前与拉伸时相同,都与拉伸时相同,当达到后,试件出现显著的塑性变形,越压越短,横截面增大,试件端部由于与压头之间摩擦的影响,横向变形受到阻碍,被压成鼓形。得不到压缩时的强度极限。因此,钢材的力学性质主要时用拉伸试验来确定。
铸铁压缩时的力学性能:与塑性材料相反脆性材料在压缩时的力学性质与拉伸时有较大差别。
4、材料在拉伸与压缩时力学性质特点:
l 当应力不超过一定限度(不同材料其限度不同)时,成正比;
4) 塑性材料的抗拉强度极限比脆性材料高,宜作受拉构件;表示其强度特征的是和,而是杆件强度设计的依据;
⑤ 脆性材料的抗压强度极限远大于其抗拉强度极限,宜作受压构件;唯一表示强度特征的是,它也是杆件强度设计的依据。
许用应力与强度条件
1、极限应力、安全系数、许用应力:
极限应力:材料破坏时的应力称为极限应力。
安全系数、许用应力
—安全系数(大于1的数)
构件工作时允许达到的最大应力值称许用应力。许用应力应低于极限应力。
2、强度条件:
为了保证构件有足够的强度,杆内最大工作应力不得超过材料在拉压时的许用应力,即
它可解决工程上的三类强度问题:
③ 强度校核
④ 设计截面
⑤ 确定许可载荷
应力集中的概念
局部应力——截面突变处某些局部小范围内的应力。
应力集中——在截面突变处出现局部应力剧增现象。
应力集中对于塑性、脆性材料的强度产生截然不同的影响,脆性材料对局部应力的敏感性很强,而局部应力对塑性材料的强度影响很小。
拉伸和压缩静不定问题
1、静不定问题的解法:
基本思路:静力学关系,变形几何关系,物理关系。
解超静定问题,除列出平衡方程外,还要通过研究变形和内力的关系建立足够数量的补充方程,为此要找出变形的协调条件,即保持结构连续所必须满足的变形几何条件,在通过变形的物理条件(内力与变形的关系)就可以列出所需要的补充方程。
2、装配应力:
杆件制成后,其尺寸有微小误差是难免的,这种误差使静定结构的几何形状发生微小改变,而不会引起内力。但对超静定结构,这种误差就会使杆件在承受载荷前产生较大的内力。
由于加工误差,强行装配而引起的内力称为装配内力,与之相应的应力叫装配应力。计算装配应力的关键在于根据结构的变形几何关系建立补充方程。这类超静定问题的变形几何关系中一定有一项与尺寸误差d有关。
3、温度应力:
热胀冷缩是金属材料的通性,在静定结构中杆件可以自由变形,温度均匀变化所产生的伸缩,不会在杆内引起内力。但在超静定结构中,杆件的伸缩受到部分或全部约束,温度变化将会引起内力,和它相应的应力称为温度应力。
¨ 扭转与剪切
一、教学目标和教学内容
n 教学目标
掌握扭转内力的计算方法;正确理解并熟练掌握扭转剪应力、扭转变形的计算方法、剪切胡克定律和剪应力互等定理、扭转强度和扭转刚度计算。
n 教学内容
外力偶矩的计算,扭矩、扭矩图,纯剪切。
圆轴扭转时的应力和变形,扭转的强度条件和刚度条件。
扭转的强度计算和刚度计算。
扭转静不定问题,非圆截面杆扭转。
二、重点难点
重点:圆轴扭转时横截面上剪应力分布规律和强度,圆轴扭转变形时的刚度和变形(相对扭转角)计算。
难点:扭转剪应力推导过程
重点处理:通过例子,关键理解是指整个轴上的面上的最外边缘点(等截面);对变截面可用;严格区分刚度和扭转角的区别
难点处理:结合、对比的推导过程,和薄壁圆筒横截面上的推导,让学生思考可能采用的方法,然后在讲解。
三、教学方式
采用启发式教学,通过提问,引导学生思考,让学生回答问题,达到课堂互动。
四、建议学时
4学时
五、讲课提纲
扭转的概念及实例
杆件发生扭转变形的受力特点是:在杆件上作用着大小相等、转向相反、作用平面垂直于杆件轴线的两组平行力偶系。
杆件扭转变形的特点是:当杆件发生扭转变形时,任意两个横截面将绕杆轴线作相对转动而产生相对角位移,称为该两个横截面的扭转角,用j表示。
扭矩的计算和扭矩图
1、外力偶矩的计算:
已知轴所传递的功率和轴的转速,则外力偶矩(N•m)
P——功率,单位为千瓦(KW)
n——转速,单位为r/min
2、扭转时的内力——扭矩:
扭矩:受扭杆件横截面上的内力是作用在该截面上的力偶,该力偶之矩称扭矩(Mt)。
扭矩的计算方法——截面法(假设扭矩为正,即设正法)
扭矩的符号规则——右手螺旋法则
扭矩图:表示杆件各横截面上的扭矩沿杆轴的变化规律。
圆轴扭转时的应力与强度条件
1、薄壁圆筒的扭转应力
①实验研究:
变形特点:
(1)各纵向线倾斜了同一微小角度,矩形歪斜成平行四边形;
(2)各圆周线的形状、大小和间距不变,只是各圆周线绕杆轴线转动了不同的角度。
应力分布:横截面上只有切于截面的剪应力t,它组成与外加扭矩相平衡的内力系T。因壁厚t很小,假设均匀分布且沿各点圆周的切线方向。
由平衡条件 得
②切应力互等定理:
从薄壁中,用两个横截面和两个纵截面取出一个单元体,如图所示。
由平衡方程 得
¨¨ 结论:在单元体互相垂直的两个平面上,剪应力必然成对存在,且数值相等;二者都垂直于两平面的交线,其方向则共同指向或共同背离两平面的交线,这种关系称切应力互等定理。该定理具有普遍性,不仅对只有剪应力的单元体正确,对同时有正应力作用的单元体亦正确。
规定:使单元体绕其内部任意点产生顺时针方向转动趋势的剪应力为正,反之为负。
单元体上只要剪应力而无正应力的情况称为纯剪切应力状态。
③剪切胡克定律:
切应变的定义:在切应力作用下,单元体的直角将发生微小的改变,这个直角的改变量称为切应变。
剪切胡克定律:实验表明,当剪应力不超过材料的剪切比例极限时,与成正比,即
G——剪切弹性模量
2、圆轴扭转时的应力及强度计算
①变形几何关系
假设圆轴各横截面仍保持为一平面,且其形状大小不变;横截面上的半径亦保持为一直线,这个假设称平面假设。根据实验现象还可推断,与薄壁圆筒扭转时的情况一样,圆轴扭转时其横截面上不存在正应力,,仅有垂直于半径方向的切应力t作用。
②物理关系
③静力关系
,
——单位长度上的扭转角(同一截面上为一定值)
——截面对形心的极惯性矩(与截面形状、大小有关的几何量)
∴
式中:——抗扭截面模量(系数)
— ——实心轴
(内外径之比) ——空心轴
4、强度计算
强度条件:
对等直圆轴:
圆轴扭转时的变形和刚度计算
1、扭转变形
扭转角():任意两横截面相对转过的角度
在T=C,轴为等截面条件下
(弧度)
——截面的抗扭刚度(与成反比、反映截面抵抗扭转变形的能力)
2、刚度条件
(rad/m)
刚度条件:
可解决三类刚度问题。
扭转超静定问题
第 四 章 弯 曲 内 力
一、教学目标和教学内容
教学目标
①掌握弯曲变形与平面弯曲等基本概念;
②熟练掌握用截面法求弯曲内力
展开阅读全文