资源描述
最新人教版七年级数学上册期末考试卷(推荐)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.计算+++++……+的值为( )
A. B. C. D.
2.如图,在和中,,连接交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( ).
A.4 B.3 C.2 D.1
3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒
A.2.5 B.3 C.3.5 D.4
4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为( )
A.(2,3) B.(-2,-3) C.(-3,2) D.(3,-2)
5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是( )
A.AC=BC B.AB=2AC C.AC+BC=AB D.
6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
7.若,则的值为( )
A.3 B.6 C.9 D.12
8.的计算结果的个位数字是( )
A.8 B.6 C.2 D.0
9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=∠AOB,其中能确定OC平分∠AOB的有( )
A.4个 B.3个 C.2个 D.1个
二、填空题(本大题共6小题,每小题3分,共18分)
1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.
2.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.
3.若|a|=5,b=﹣2,且ab>0,则a+b=________.
4.若,则m+2n的值是________.
5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.
6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=________.
三、解答题(本大题共6小题,共72分)
1. 解方程组:
(1) (2)
2.若关于x、y的二元一次方程组的解满足x+y>0,求m的取值范围.
3.如图,在单位正方形网格中,建立了平面直角坐标系试解答下列问题:
(1)写出三个顶点的坐标;
(2)画出向右平移个单位,再向下平移个单位后的图形;
(3)求的面积.
4.如图1,△ABD,△ACE都是等边三角形,
(1)求证:△ABE≌△ADC;
(2)若∠ACD=15°,求∠AEB的度数;
(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.
5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;
(2)请把条形统计图补充完整;
(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?
6.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A、点B的距离相等,求点P对应的数;
(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;
(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、B
3、D
4、C
5、C
6、C
7、C
8、D
9、D
10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、2b-2a
2、105°
3、-7
4、-1
5、1
6、54°
三、解答题(本大题共6小题,共72分)
1、(1) ;(2) .
2、m>﹣2
3、(1)A(-1,8),B(-4,3),C(0,6);(2)答案略;(3) .
4、(1)略(2) ∠AEB=15°(3) 略
5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.
6、(1)点P对应的数是1;(2)存在x的值,当x=﹣3或5时,满足点P到点A、点B的距离之和为8;(3)当点A与点B之间的距离为3个单位长度时,点P所对应的数是﹣4或﹣28.
7 / 7
展开阅读全文