资源描述
小学奥数(三年级金典讲义资料全集)
第一讲 从数表中找规律
在前面学习了数列找规律的基础上,这一讲将从数表的角度出发,继续研究数列的规律性。
例1 下图是按一定的规律排列的数学三角形,请你按规律填上空缺的数字
分析及解答 这个数字三角形的每一行都是等差数列(第一行除外),因此,第5行中的括号内填20,第6行中的括号内填 24。
例2 用数字摆成下面的三角形,请你仔细观察后回答下面的问题:① 这个三角阵的排列有何规律?② 根据找出的规律写出三角阵的第6行、第7行。③ 推断第20行的各数之与是多少?
分析及解答
①首先可以看出,这个三角阵的两边全由1组成;其次,这个三角阵中,第一行由1个数组成,第2行有两个数…第几行就由几个数组成;最后,也是最重要的一点是:三角阵中的每一个数(两边上的数1除外),都等于上一行中及它相邻的两数之与.如:2=1+1,3=2+1,4=3+1,6=3+3。
②根据由①得出的规律,可以发现,这个三角阵中第6行的数为1,5,10,10,5,1;第7行的数为1,6,15,20,15,6,1。
③要求第20行的各数之与,我们不妨先来看看开始的几行数。
至此,我们可以推断,第20行各数之与为219。
[本题中的数表就是著名的杨辉三角,这个数表在组合论中将得到广泛的应用]
例3 将自然数中的偶数2,4,6,8,10…按下表排成5列,问2000出现在哪一列?
分析及解答
方法1:考虑到数表中的数呈S形排列,我们不妨把每两行分为一组,每组8个数,则按照组中数字从小到大的顺序,它们所在的列分别为B、C、D、E、D、C、B、A.因此,我们只要考察2000是第几组中的第几个数就可以了,因为2000是自然数中的第1000个偶数,而1000÷8=125,即2000是第125组中的最后一个数,所以,2000位于数表中的第250行的A列。
方法2:仔细观察数表,可以发现:A列中的数都是16的倍数,B列中数除以16余2或者14,C列中的数除以16余4或12,D列的数除以16余6或10,E列中的数除以16余8.这就是说,数表中数的排列及除以16所得的余数有关,我们只要考察2000除以16所得的余数就可以了,因为2000÷16=125,所以 2000位于A列。
学习的目的不仅仅是为了会做一道题,而是要学会思考问题的方法.一道题做完了,我们还应该仔细思考一下,哪种方法更简洁,题目主要考察的问题是什么…这样学习才能举一反三,不断进步。
就例 3而言,如果把偶数改为奇数, 2000改为 1993,其他条件不变,你能很快得到结果吗?
例4 按图所示的顺序数数,问当数到1500时,应数到第几列? 1993呢?
分析及解答
方法1:同例3的考虑,把数表中的每两行分为一组,则第一组有9个数,其余各组都只有8个数。(1500-9)÷8=186…3(1993—9)÷8=248
所以,1500位于第188组的第3个数,1993位于第249组的最后一个数,即1500位于第④列,1993位于第①列。
方法2:考虑除以8所得的余数.第①列除以8余1,第②列除以8余2或是8的倍数,第③列除以8余3或7,第④列除以8余4或6,第⑤列除以8余5;而1500÷8=187…4,1993÷8=249…1,则1993位于第①列,1500位于第④列。
例5 从1开始的自然数按下图所示的规则排列,并用一个平行四边形框出九个数,能否使这九个数的与等于①1993;②1143;③1989.若能办到,请写出平行四边形框内的最大数与最小数;若不能办到,说明理由.
分析及解答
我们先来看这九个数的与有什么规律.仔细观察,容易发现:12+28=2×20,13+27=2×20,14+26=2×20,19+21= 2 × 20,即: 20是框中九个数的平均数.因此,框中九个数的与等于20及9的乘积.事实上,由于数表排列的规律性,对于任意由这样的平行四边形框出的九个数来说,都有这样的规律,即这九个数的与等于平行四边形正中间的数乘以9。
① 因为1993不是9的倍数,所以不可能找到这样的平行四边形,使其中九个数的与等于1993。
②1143÷9=127,127÷8=15…7.这就是说,如果1143是符合条件的九个数的与,则正中间的数一定是127,而127位于数表中从右边数的第2列.但从题中的图容易看出,平行四边形正中间的数不能位于第1行,也不能位于从左数的第1列、第2列、第7列与第8列,因此,不可能构成以127为中心的平行四边形。
③ 1989÷9=221,221÷8=27…5,即1989是9的倍数,且数221位于数表中从左起的第5列,故可以找到九个数之与为1989的平行四边形,如图:
其中最大的数是229,最小的数是213.
习题一
1.观察下面已给出的数表,并按规律填空:
2.下面一张数表里数的排列存在着某种规律,请你找出规律之后,按照规律填空。
3.下图是自然数列排成的数表,按照这个规律,1993在哪一列?
4.从1开始的自然数如下排列,则第2行中的第7个数是多少?
习题一解答
1.第5行的括号中填25;第6行的括号中填37。
2.这个数表的规律是:第二行的数等于相应的第三行的数及第一行的数的差的2倍.即:8=2×(6—2),10=2×(10—5),4=2×(9—7),18=2×(20—11).因此,括号内填12。
3.1993应排在B列。
4.参看下表:
第2行的第7个数为30
第四讲 最短路线问题
在日常工作、生活与娱乐中,经常会遇到有关行程路线的问题.在这一讲里,我们主要解决的问题是如何确定从某处到另一处最短路线的条数。
例1 下图4—1中的线段表示的是汽车所能经过的所有马路,这辆汽车从A走到B处共有多少条最短路线?
分析 为了叙述方便,我们在各交叉点都标上字母.如图4—2.在这里,首先我们应该明确从A到B的最短路线到底有多长?从A点走到B点,不论怎样走,最短也要走长方形AHBD的一个长及一个宽,即AD+DB.因此,在水平方向上,所有线段的长度与应等于AD;在竖直方向上,所有线段的长度与应等于DB.这样我们走的这条路线才是最短路线.为了保证这一点,我们就不应该走“回头路”,即在水平方向上不能向左走,在竖直方向上不能向上走.因此只能向右与向下走。
有些同学很快找出了从A到B的所有最短路线,即:
A→C→D→G→B A→C→F→G→B
A→C→F→I→B A→E→F→G→B
A→E→F→I→B A→E→H→I→B
通过验证,我们确信这六条路线都是从A到B的最短路线.如果按照上述方法找,它的缺点是不能保证找出所有的最短路线,即不能保证“不漏”.当然如果图形更复杂些,做到“不重”也是很困难的。
现在观察这种题是否有规律可循。
1.看C点:由A、由F与由D都可以到达C,而由F→C是由下向上走,由D→C是由右向左走,这两条路线不管以后怎样走都不可能是最短路线.因此,从A到C只有一条路线。
同样道理:从A到D、从A到E、从A到H也都只有一条路线。
我们把数字“1”分别标在C、D、E、H这四个点上,如图4—2。
2.看F点:从上向下走是C→F,从左向右走是E→F,那么从A点出发到F,可以是A→C→F,也可以是A→E→F,共有两种走法.我们在图4—2中的F点标上数字“2”.2=1+1.第一个“1”是从A→C的一种走法;第二个“1”是从A→E的一种走法。
3.看G点:从上向下走是D→G,从左向右走是F→G,那么从A→G
我们在G点标上数字“3”.3=2+1,“2”是从A→F的两种走法,“1”是从A→D的一种走法。
4.看I点:从上向下走是F→I,从左向右走是H→I,那么从出发点
在I点标上“3”.3=2+1.“2”是从A→F的两种走法;“1”是从A→H的一种走法。
5.看B点:从上向下走是G→B,从左向右走是I→B,那么从出发点A→B可以这样走:
共有六种走法.6=3+3,第一个“3”是从A→G共有三种走法,第二个“3”是从A→I共有三种走法.在B点标上“6”。
我们观察图4—2发现每一个小格右下角上标的数正好是这个小格右上角及左下角的数的与,这个与就是从出发点A到这点的所有最短路线的条数.这样,我们可以通过计算来确定从A→B的最短路线的条数,而且能够保证“不重”也“不漏”。
解:由上面的分析可以得到如下的规律:每个格右上角及左下角所标的数字与即为这格右下角应标的数字.我们称这种方法为对角线法,也叫标号法。
根据这种“对角线法”,B点标6,那么从A到B就有6条不同的最短路线(见图4—3)。
答:从A到B共有6条不同的最短路线。
例2 图4—4是一个街道的平面图,纵横各有5条路, 某人从A到B处(只能从北向南及从西向东),共有多少种不同的走法?
分析因为B点在A点的东南方向,题目要求我们只能从北向南及从西向东,也就是要求我们走最短路线。解:如图4—5所示。答:从A到B共有70种不同的走法。
例3 如图4—6,从甲地到乙地最近的道路有几条?
分析 要求从甲地到乙地最近的道路有几条,也就是求从甲地到乙地的最短路线有几条.把各交叉点标上字母,如图4—7.这道题的图形及例1、例2的图形又有所区别,因此,在解题时要格外注意是由哪两点的数之与来确定另一点的。
①由甲→A有1种走法,由甲→F有1种走法,那么就可以确定从甲→G共有1+1=2(种)走法。
②由甲→B有1种走法,由甲→D有1种走法,那么可以确定由甲→E共有1+1=2(种)走法.
③由甲→C有1种走法,由甲→H有2种走法,那么可以确定由甲→J共有1+2=3(种)走法。
④由甲→G有2种走法,由甲→M有1种走法,那么可以确定从甲→N共有2+1=3(种)走法。
⑤从甲→K有2种走法,从甲→E有2种走法,那么从甲→L共有2+2=4(种)走法。
⑥从甲→N有3种走法,从甲→L有4种走法,那么可以确定从甲→P共有3+4=7(种)走法。
⑦从甲→J有3种走法,从甲→P有7种走法,那么从甲→乙共有3+7=10(种)走法。
解:在图4—7中各交叉点标上数,乙处标上10,则从甲到乙共有10条最近的道路。
例4 某城市的街道非常整齐,如图4—8所示,从西南角A处到东北角B处要求走最近的路,并且不能通过十字路口C(因正在修路).问共有多少种不同的走法?
分析 因为B点在A点的东北角,所以只能向东与向北走.为了叙述方便,在各交叉点标上字母,如图4—9.
① 从A→A1有1种走法,A→A11有1种走法,那么可以确定从A→A10共有1+1=2(种)走法。
② 从A→A2有1种走法,A→A10有2种走法,那么可以确定从A→A9共有1+2=3(种)走法。
③ 从A→A3有1种走法,A→A9有3种走法,那么可以确定从A→A8共有1+3=4(种)走法.
④从A→A4有1种走法,A→A8有4种走法,那么可以确定A→A7,共有1+4=5(种)走法。
⑤ 从A→A5有1种走法,A→A7有5种走法,那么可以确定A→A6共有1+5=6(种)走法。
⑥ 从A→C1有1种走法,A→A10有2种走法,那么可以确定从A→C2共有1+2=3(种)走法。
⑦ 从A→C2有3种走法,A→A9有3种走法,那么可以确定A→C3共有3+3=6(种)走法。
⑧ 从A→C4可以是A→C→C4,也可以是A→A7→C4,因为C处正在修路,所以A→C→C4行不通,只能由A7→C4,由于A→A7有5种走法,所以A→C4也有5种走法,从A→A6有6种走法,所以从A→C5共有5+6=11(种)走法。
⑨从A→B6有1种走法,A→C2有3种走法,那么可以确定从A→B7共有1+3=4(种)走法。
⑩从A→B7有4种走法,A→C3有6种走法,那么可以确定从A→B8共有4+6=10(种)走法。
⑾从A→B9可以是A→B8→B9,也可以是A→C→B9,因为C处正在修路,所以A→C→B9行不通,只能由B8→B9,由于A→B8有10种走法,所以A→B9。也有10种走法.从A→C4有5种走法,所以从A→B10共有10+5=15(种)走法。
⑿ 从A→C5有11种走法,A→B10有15种走法,那么从A→B11共有15+11=26(种)走法。
⒀ 从A→B5有1种走法,A→B7有4种走法,那么可以确定从A→B4共有1+4=5(种)走法。
⒁ 从A→B4有5种走法,A→B8有10种走法,那么可以确定从A→B3共有5+10=15(种)走法.
(15)从A→B3有15种走法,A→B9有10种走法,那么可以确定从A→B2共有15+10=25(种)走法。
(16)从A→B2有25种走法,A→B10有15种走法,那么可以确定从A→B1共有25+15=40(种)走法。
(17)从A→B1有40种走法,A→B11有26种走法,那么可以确定从A→B共有40+26=66(种)走法。
解:如图4-10所示。答:从A到B共有66种不同的走法.
习题四
1.如果沿图4-11中的线段,以最短的路程,从A点出发到B点,共有多少种不同的走法?
2.从学校到少年宫有4条东西向的马路与3条南北向的马路相通.如图4-12,李楠从学校出发,步行到少年宫(只许向东与向南行进),最多有多少种不同的行走路线?
3.如图 4-13,从P到Q共有多少种不同的最短路线?
4.如图4-14所示为某城市的街道图,若从A走到B(只能由北向南、由西向东),则共有多少种不同的走法?
5.如图4-15所示,从甲地到乙地,最近的道路有几条?
6.图4-16为某城市的街道示意图,C处正在挖下水道,不能通车,从A到B处的最短路线共有多少条?
7.如图4-17所示是一个街道的平面图,在不走回头路、不走重复路的条件下,可以有多少种不同的走法?
8.图4-18是某城市的主要公路示意图,今在C、D、E、F、G、H路口修建立交桥,车辆不能通行,那么从A到B的最近路线共有几条?
习题四解答
1.解:
答:从A到B共有126种走法。
2.解:
答:从学校到少年宫最多有10种不同的行走路线。
3.解:
答:从P到Q共有126条不同的最短路线.
4.解:
答:从A到B共有12种走法。
5.解:
答:从甲到乙最近的道路有11条。
6.解:
答:从A到B的最短路线有431条.
7.解:
答:从A到B有25种不同的走法。
8.解:
答:从A到B最短的路线有699条
第五讲 归一问题
为什么把有的问题叫归一问题?我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量,这大概就是归一说法的来历吧!
归一问题有两种基本类型.一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?
正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
例1 一只小蜗牛6分钟爬行12分米,照这样速度1小时爬行多少米?
分析 为了求出蜗牛1小时爬多少米,必须先求出1分钟爬多少分米,即蜗牛的速度,然后以这个数目为依据按要求算出结果。
解:①小蜗牛每分钟爬行多少分米? 12÷6=2(分米)② 1小时爬几米?1小时=60分。
2×60=120(分米)=12(米)答:小蜗牛1小时爬行12米。
还可以这样想:先求出题目中的两个同类量(如时间及时间)的倍数(即60分是6分的几倍),然后用1倍数(6分钟爬行12分米)乘以倍数,使问题得解。
解:1小时=60分钟12×(60÷6)=12×10=120(分米)=12(米)
或 12÷(6÷60)=12÷0.1=120(分米)=12(米)答:小蜗牛1小时爬行12米。
例2 一个粮食加工厂要磨面粉20000千克.3小时磨了6000千克.照这样计算,磨完剩下的面粉还要几小时?
方法1:
分析 通过3小时磨6000千克,可以求出1小时磨粉数量.问题求磨完剩下的要几小时,所以剩下的量除以1小时磨的数量,得到问题所求。
解:(20000-6000)÷(6000÷3)=7(小时)答:磨完剩下的面粉还要7小时。
方法2:用比例关系解。
解:设磨剩下的面粉还要x小时。
6000x=3×14000 x=7(小时)答:磨完剩下的面粉还要7小时。
例3 学校买来一些足球与篮球.已知买3个足球与5个篮球共花了281元;买3个足球与7个篮球共花了355元.现在要买5个足球、4个篮球共花多少元?
分析 要求5个足球与4个篮球共花多少元,关键在于先求出每个足球与每个篮球各多少元.根据已知条件分析出第一次与第二次买的足球个数相等,而篮球相差7-5=2(个),总价差355-281=74(元).74元正好是两个篮球的价钱,从而可以求出一个篮球的价钱,一个足球的价钱也可以随之求出,使问题得解。
解:①一个篮球的价钱:(355-281)÷(7-5)=37元②一个足球的价钱:(281-37×5)÷3=32(元)③共花多少元? 32×5+37×4=308(元)
答:买5个足球,4个篮球共花308元。
例4 一个长方体的水槽可容水480吨.水槽装有一个进水管与一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?
分析 要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度与排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水及排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。
解:①进水速度:480÷8=60(吨/小时)②排水速度:480÷6=80(吨/小时)
③排空全池水所需的时间:480÷(80-60)=24(小时)列综合算式:
480÷(480÷6-480÷8)=24(小时)答:两管齐开需24小时把满池水排空。
例5 7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆?
方法1:
分析 要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。
解:①一辆卡车一次能运多少吨沙土?336÷6÷7=56÷7=8(吨)
②560吨沙土,5趟运完,每趟必须运走几吨?560÷5=112(吨)
③需要增加同样的卡车多少辆?112÷8-7=7(辆)列综合算式:
560÷5÷(336÷6÷7)-7=7(辆)答:需增加同样的卡车7辆。
方法2:
在求一辆卡车一次能运沙土的吨数时,可以列出两种不同情况的算式:①336÷6÷7,②336÷7÷6.算式①先除以6,先求出7辆卡车1次运的吨数,再除以7求出每辆卡车的载重量;算式②,先除以7,求出一辆卡车6次运的吨数,再除以6,求出每辆卡车的载重量。
在求560吨沙土5次运完需要多少辆卡车时,有以下几种不同的计算方法:
求出一共用车14辆后,再求增加的辆数就容易了。
例6 某车间要加工一批零件,原计划由18人,每天工作8小时,7.5天完成任务.由于缩短工期,要求4天完成任务,可是又要增加6人.求每天加班工作几小时?
分析 我们把1个工人工作1小时,作为1个工时.根据已知条件,加工这批零件,原计划需要多少“工时”呢?求出“工时”数,使我们知道了工作总量.有了工作总量,以它为标准,不管人数增加或减少,工期延长或缩短,仍然按照原来的工作效率,只要能够达到加工零件所需“工时”总数,再求出要加班的工时数,问题就解决了。
解:①原计划加工这批零件需要的“工时”:8×18×7.5=1080(工时)
②增加6人后每天工作几小时? 1080÷(18+6)÷4=11.25(小时)
③每天加班工作几小时? 11.25-8=3.25(小时)答:每天要加班工作3.25小时。
例7 甲、乙两个打字员4小时共打字3600个.现在二人同时工作,在相同时间内,甲打字2450个,乙打字2050个.求甲、乙二人每小时各打字多少个?
分析 已知条件告诉我们:“在相同时间内甲打字2450个,乙打字2050个.”既然知道了“时间相同”,问题就容易解决了.题目里还告诉我们:“甲、乙二人4小时共打字3600个.”这样可以先求出“甲乙二人每小时打字个数之与”,就可求出所用时间了.
解:①甲、乙二人每小时共打字多少个?3600÷4=900(个)
②“相同时间”是几小时?(2450+2050)÷900=5(小时)
③甲打字员每小时打字的个数: 2450÷5=490(个)
④乙打字员每小时打字的个数:2050÷5=410(个)
答:甲打字员每小时打字490个,乙打字员每小时打字410个。
还可以这样想:这道题的已知条件可以分两层.第一层,甲乙二人4小时共打字3600个;第二层,在相同时间内甲打字2450个,乙打字2050个.由这两个条件可以求出在相同的时间内,甲乙二人共打字 2450+2050=4500(个);打字 3600个用4小时,打字4500个用几小时呢?先求出4500是3600的几倍,也一定是4小时的几倍,即“相同时间”。
解:①“相同时间”是几小时?4×[(2450+2050)÷3600]=5(小时)
②甲每小时打字多少个?2450÷5=490(个)③乙每小时打字多少个?2050÷5=410(个)
答:甲每小时打字490个,乙每小时打字410个.
习题五
1.花果山上桃树多,6只小猴分180棵.现有小猴72只,如数分后还余90棵,请算出桃树有几棵?
2.5箱蜜蜂一年可以酿75千克蜂蜜,照这样计算,酿300千克蜂蜜要增加几箱蜜蜂?
3.4辆汽车行驶300千米需要汽油240公升.现有5辆汽车同时运货到相距800千米的地方,汽油只有1000公升,问是否够用?
4.5台拖拉机24天耕地12000公亩.要18天耕完54000公亩土地,需要增加同样拖拉机多少台?
习题五解答
1.180÷6×72+90=2250(棵)或:180×(72÷6)+90=2250(棵)答:桃树共有2250棵。
2.300÷(75÷5)-5=15(箱)或 5×[(300-75)÷75]=5×3=15(箱)答:要增加 15箱蜜蜂。
3.提示:要想得知1000公升汽油是否够用,先算一算行800千米需要的汽油,然后进行比较.如果大于1000公升,说明不够用;小于或等于 1000公升,说明够用。240÷4÷300×5×800=800(公升) 800公升<1000公升,说明够用.答:1000公升汽油够用。
4.提示:先求出1台拖拉机1天耕地公亩数,然后求出18天耕54000公亩需要拖拉机台数,再求增加台数。
答:需要增加 25台拖拉机
第六讲 平均数问题
求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数……”。
平均数问题包括算术平均数、加权平均数、连续数与求平均数、调与平均数与基准数求平均数。
解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数。
一、算术平均数
例1 用4个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米与8厘米,这4个杯子水面平均高度是多少厘米?
分析 求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。
解:(4+5+7+8)÷4=6(厘米)答:这4个杯子水面平均高度是6厘米。
例2 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
分析 解题关键是根据语文、英语两科平均分是84分求出两科的总分,又知道两科的分数差是10分,用与差问题的解法求出语文、英语各得多少分后,就可以求出其他各科成绩。
解:①英语:(84×2+10)÷2=89(分)②语文: 89-10=79(分)③政治:86×2-89=83(分)④数学: 91.5×2-83=100(分)⑤生物: 89×5-(89+79+83+100)=94(分)
答:蔡琛这次考试英语、语文、政治、数学、生物的成绩分别是89分、79分、83分、100分、94分。
二、加权平均数
例3 果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?
分析 要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数与及总钱数相对应的总千克数。
解:①什锦糖的总价:4.40×2+4.20×3+7.20×5=57.4(元)②什锦糖的总千克数: 2+3+5=10(千克)③什锦糖的单价:57.4÷10=5.74(元)答:混合后的什锦糖每千克5.74元。
我们把上述这种平均数问题叫做“加权平均数”.例3中的5.74元叫做4.40元、4.20元、7.20元的加权平均数.2千克、3千克、5千克这三个数很重要,对什锦糖的单价产生不同影响,有权衡轻重的作用,所以这样的数叫做“权数”。
例4 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
分析 此题是已知两个数的加权平均数、两个数与其中一个数的权数,求另一个数的权数的问题.甲棉田平均亩产籽棉203斤比甲乙棉田平均亩产多18斤,5亩共多出90斤.乙棉田平均亩产比甲乙棉田平均亩产少15斤,乙少的部分用甲多的部分补足,也就是看90斤里面包含几个15斤,从而求出的是乙棉田的亩数,即“权数”。
解:①甲棉田5亩比甲乙平均亩产多多少斤?(203-185)×5=90(斤)②乙棉田有几亩?90÷(185-170)=6(亩)答:乙棉田有6亩。
三、连续数平均问题
我们学过的连续数有“连续自然数”、“连续奇数”、“连续偶数”.已知几个连续数的与求出这几个数,也叫平均问题。
例5 已知八个连续奇数的与是144,求这八个连续奇数。
分析 已知偶数个奇数的与是144.连续数的个数为偶数时,它的特点是首项及末项之与等于第二项及倒数第二项之与,等于第三项及倒数第三项之与……即每两个数分为一组,八个数分成4组,每一组两个数的与是144÷4=36.这样可以确定出中间的两个数,再依次求出其他各数。
解:①每组数之与:144÷4=36②中间两个数中较大的一个:(36+2)÷2=19③中间两个数中较小的一个:19-2=17 ∴这八个连续奇数为11、13、15、17、19、21、23与25。
答:这八个连续奇数分别为:11、13、15、17、19、21、23与25。
四、调与平均数
例6 一个运动员进行爬山训练.从A地出发,上山路长11千米,每小时行4.4千米.爬到山顶后,沿原路下山,下山每小时行5.5千米.求这位运动员上山、下山的平均速度。
分析 这道题目是行程问题中关于求上、下山平均速度的问题.解题时应区分平均速度与速度的平均数这两个不同的概念.速度的平均数=(上山速度+下山速度)÷2,而平均速度=上、下山的总路程÷上、下山所用的时间与。
解:①上山时间: 11÷4.4=2.5(小时)②下山时间:11÷5.5=2(小时)
五、基准数平均数
例7 中关村三小有15名同学参加跳绳比赛,他们每分钟跳绳的个数分别为93、94、85、92、86、88、94、91、88、89、92、86、93、90、89,求每个人平均每分钟跳绳多少个?
分析 从他们每人跳绳的个数可以看出,每人跳绳的个数很接近,所以可以选择其中一个数90做为基准数,再找出每个加数及这个基准数的差.大于基准数的差作为加数,如93=90+3,3作为加数;小于基准数的差作为减数,如 87=90-3,3作为减数.把这些差累计起来,用与数的项数乘以基准数,加上累计差,再除以与数的个数就可以算出结果。
解:①跳绳总个数。93+94+85+92+86+88+94+91+88+89+92+86+93+90+89
=90×15+(3+4+2+4+1+2+3)-(5+4+2+2+1+4+1)=1350+19-19=1350(个)
②每人平均每分钟跳多少个?1350÷15=90(个)答:每人平均每分钟跳90个.
习题六
1.某次数学考试,甲乙的成绩与是184分,乙丙的成绩与是187分,丙丁的成绩与是188分,甲比丁多1分,问甲、乙、丙、丁各多少分?
2.求1962、1973、1981、1994、2005的平均数。
3.缝纫机厂第一季度平均每月生产缝纫机750台,第二季度生产的是第一季度生产的2倍多66台,下半年平均月生产1200台,求这个厂一年的平均月产量。
4.甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克与多少乙种糖混合,才能使每千克糖的价钱为8.2元?
5.7个连续偶数的与是1988,求这7个连续偶数。
6.6个学生的年龄正好是连续自然数,他们的年龄与及小明爸爸的年龄相同,7个人年龄一共是126岁,求这6个学生各几岁?
7.食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?
习题六解答
1.∵甲+乙=184 (1)乙+丙=187 (2)丙+丁=188 (3)(2)-(1)丙-甲=3 (4)
(3)-(4)丁+甲=185∴甲=(185+1)÷2=93(分)丁=93-1=92(分)乙=184-93=91(分)
丙=187-91=96(分)答:甲、乙、丙、丁的成绩分别为93分、91分、96分、与92分。
2.1962+1973+1981+1994+2005=1981×5+(13+24)-(8+19)=9915。9915÷5=1983。
3.①上半年总产量:750×3+750×3×2+66=6816(台)②下半年总产量:1200×6=7200(台)
③平均月产量:(6816+7200)÷12=1168(台)答:平均月产量是1168台。
4.(8.8-8.2)×5÷(8.2-7.2)=3(千克)答:及乙种糖3千克混合。
5.分析 已知奇数个偶数的与,可以用与除以个数求出中间数,再求出其他各偶数。中间数:1988÷7=284 其他六个数分别为278、280、282、284、286、288、290。答:这7个偶数分别为:278、280、282、284、286、288、290。
6.分析 6个孩子年龄与及小明爸爸年龄相同,说明小明爸爸年龄是126岁的一半,是63岁.其他6个学生的年龄与也是63岁. 63÷3=21(岁), 21=10+11为中间两个数,所以其他四人年龄依次为8、9、12、13岁。答:这六个学生的年龄分别为:8、9、10、11、12、13岁。
7.解:设5只羊的重量从轻到重依次为A1、A2、A3、A4、A5.A1+A2=47,A1+A3=50……A3+A5=58,A4+A5=59.10次称重5只羊各称过4次,所以它们的重量与应是:
A1+A2+A3+A4+A5=(47+50+51+52+53+54+55+57+58+59)÷4=134
A3=134-(A1+A2)-(A4+A5)=28 A1=50-28=22 A2=47-22=25
A5=58-28=30 A4=59-30=29
答:这5只羊的重量分别为22千克、25千克、28千克、29千克、30千克.
第七讲 与倍问题
与倍问题是已知大小两个数的与及它们的倍数关系,求大小两个数的应用题.为了帮助我们理解题意,弄清两种量彼此间的关系,常采用画线段图的方法来表示两种量间的这种关系,以便于找到解题的途径。
例1 甲班与乙班共有图书160本.甲班的图书本数是乙班的3倍,甲班与乙班各有图书多少本?
分析 设乙班的图书本数为1份,则甲班图书为乙班的3倍,那么甲班与乙班图书本数的与相当于乙班图书本数的4倍.还可以理解为4份的数量是160本,求出1份的数量也就求出了乙班的图书本数,然后再求甲班的图书本数.用下图表示它们的关系:
解:乙班:160÷(3+1)=40(本)甲班:40×3=120(本)或 160-40=120(本)
答:甲班有图书120本,乙班有图书40本。这道应用题解答完了,怎样验算呢?
可把求出的甲班本数与乙班本数相加,看与是不是160本;再把甲班的本数除以乙班本数,看是不是等于3倍.如果及条件相符,表明这题作对了.注意验算决不是把原式再算一遍。
验算:120+40=160(本)120÷40=3(倍)。
例2 甲班有图书120本,乙班有图书30本,甲班给乙班多少本,甲班的图书是乙班图书的2倍?
分析 解这题的关键是找出哪个量是变量,哪个量是不变量.从已知条件中得出,不管甲班给乙班多少本书,还是乙班从甲班得到多少本书,甲、乙两班图书总与是不变的量.最后要求甲班图书是乙班图书的2倍,那么甲、乙两班图书总与相当于乙班现有图书的3倍.依据解与倍问题的方法,先求出乙班现有图书多少本,再及原有图书本数相比较,可以求出甲班给乙班多少本书(见上图)。
解:①甲、乙两班共有图书的本数是:30+120=150(本)
②甲班给乙班若干本图书后,甲、乙两班共有的倍数是:2+1=3(倍)
③乙班现有的图书本数是:150÷3=50(本)④甲班给乙班图书本数是:50-30=20(本)
综合算式:(30+120)÷(2+1)=50(本)50-30=20(本)
答:甲班给乙班20本图书后,甲班图书是乙班图书的2倍。
验算:(120-20)÷(30+20)=2(倍)120-20)+(30+20)=150 (本)。
例3 光明小学有学生760人,其中男生比女生的3倍少40人,男、女生各有多少人?
分析 把女生人数看作一份,由于男生人数比女生人数的3倍还少40人,如果用男、女生人数总与760人再加上40人,就等于女生人数的4倍(见下图)。
解:①女生人数:(760+40)÷(3+1)=200(人)②男生人数:200×3-40=560(人)
或 760-200=560(人)答:男生有560人,女生有200人。
验算:560+200=760(人)(560+40)÷200=3(倍)。
例4 果园里有桃树、梨树、苹果树共552棵.桃树比梨树的2倍多12棵,苹果树比梨树少20棵,求桃树、梨树与苹果树各有多少棵?
分析 下图可以看出桃树比梨树的2倍多12棵,苹果树比梨树少20棵,都是同梨树相比较、以梨树的棵数为标准、作为1份数容易解答.又知三种树的总数是552棵.如果给苹果树增加20棵,那么就与梨树同样多了;再从桃树里减少12棵,那么就相当于梨树的2倍了,而总棵树则变为552+20-12=560(棵),相当于梨树棵数的4倍。
解:①梨树的棵数:(552+20-12)÷(1+1+2)=560÷4=140(棵)
②桃树的棵数:140×2+12=292(棵)③苹果树的棵数: 140-20=120(棵)
答:桃树、梨树、苹果树分别是292棵、140棵与120棵。
例5 549是甲、乙、丙、丁4个数的与.如果甲数加上2,乙数减少2,丙数乘以2,丁数除以2以后,则4个数相等.求4个数各是多少?
分析 上图可以看出,丙数最小.由于丙数乘以2与丁数除以2相等,也就是丙数的2倍与丁数的一半相等,即丁数相当于丙数的4倍.乙减2之后是丙的2倍,甲加上2之后也是丙的2倍.根据这些倍数关系,可以先求出丙数,再分别求出其他各数。
解:①丙数是:(549+2-2)÷(2+2+1+4)=549÷9=61②甲数是:61×2-2=120
③乙数是:61×2+2=124④丁数是:61×4=24
展开阅读全文