资源描述
可把它理解为 作为 的函数的全微分式。,第二章 均匀物质的热力学性质,2.1 内能、焓、自由能和吉布斯函数的全微分,或,一、四个热力学函数基本的全微分式,反映的系统热力学量之间的关系,不论连接两个平衡态的过程是否可逆,热力学基本方程都成立。,1、内能,2、焓,焓的定义是 ,两边求微分,得,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,可把它理解为 作为 的函数的全微分式。,3、自由能,自由能的定义是 ,两边求微分,得,可把它理解为 作为 的函数的全微分式。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,4、吉布斯函数,吉布斯函数的定义是 ,两边求微分,得,可把它理解为 作为 的函数的全微分式。,本章的基础和出发点,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,求偏导数的次序可以交换,有,二、推导麦氏关系,(1),(2),于是,得到,于是,得到,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,求偏导数的次序可以交换,有,(3),(4),Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,上式将 这四个变量用热力学函数 的偏导表达出来。,上面四式是 这四个变量的偏导数之间的关系,简称,麦氏关系,。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,2.2,麦氏关系的简单应用,麦氏关系给出了 这四个变量的偏导数之间的关系,应用这些关系,可以把一些不能直接从实验测量的物理量用可直接从实验上测量的量表达出来。,一、,麦氏关系,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,二、简单应用,1、选 为状态参量,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,定容热容量:,温度不变时内能随体积的变化率与物态方程的关系,例1,.,理想气体,,例2,.,对于1mol范氏气体,有:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,2,、,选 为独立变量,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,3、定容热容量和定压热容量的关系,对于理想气体,有,理想气体,所以有,整理得,适用于任何简单系统,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,水的密度在4摄氏度时具有极大值,即此时,水在4摄氏度时,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,三,.,运用雅可比行列式进行导数变换,设,有,性质:,证明:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例1:证明,证明:,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,例2:求证绝热压缩系数 与等温压缩系数 之比等于定容热容量与定压热容量的比值。,Evaluation only.,Created with Aspose.Slides for.NET 3.5 Client Profile 5.2.0.0.,Copyright 2004-2011 Aspose Pty Ltd.,
展开阅读全文