资源描述
一次函数经典题
一.定义型
例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知
,
,故一次函数的解析式为63。
注意:利用定义求一次函数解析式时,要保证k≠0。如本例中应保证3≠0。
二. 点斜型
例2. 已知一次函数3的图像过点(2, -1),求这个函数的解析式。
解: 一次函数 的图像过点(2, -1),
,即1。故这个一次函数的解析式为3。
变式问法:已知一次函数3 ,当2时,1,求这个函数的解析式。
三. 两点型
例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为。
解:设一次函数解析式为,由题意得
, 故这个一次函数的解析式为24
四. 图像型
例4. 已知某个一次函数的图像如图所示,则该函数的解析式为。
解:设一次函数解析式为由图可知一次函数 的图像过点(1, 0)、(0, 2)
有 故这个一次函数的解析式为22
五. 斜截型
例5. 已知直线与直线2x平行,且在y轴上的截距为2,则直线的解析式为。
解析:两条直线; 。当k12 ,b1≠b2时,
直线与直线2x平行, 。
又直线在y轴上的截距为2,故直线的解析式为22
六. 平移型
例6. 把直线21向下平移2个单位得到的图像解析式为。
解析:设函数解析式为 ,
直线21向下平移2个单位得到的直线与直线21平行
直线在y轴上的截距为 1-21,故图像解析式为
七. 实际应用型
例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为。
解:由题意得20-0.2t ,即0.220
故所求函数的解析式为 0.220()
注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
八. 面积型
例8. 已知直线4与两坐标轴所围成的三角形面积等于4,则直线解析式为。
解:易求得直线与x轴交点为,所以,所以2 ,即 故直线解析式为24或24
九. 对称型
若直线与直线关于
(1)x轴对称,则直线的解析式为
(2)y轴对称,则直线的解析式为
(3)直线对称,则直线的解析式为
(4)直线对称,则直线的解析式为
(5)原点对称,则直线的解析式为
例9. 若直线l与直线21关于y轴对称,则直线l的解析式为。
解:由(2)得直线l的解析式为21
十. 开放型
例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。
解:(1)若经过A、B两点的函数图像是直线,由两点式易得26
(2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以是双曲线,解析式为
(3)其它(略)
十一. 几何型
例11. 如图,在平面直角坐标系中,A、B是x轴上的两点,,,以、为直径的半圆分别交、于E、F两点,若C点的坐标为(0, 3)。
(1) 求图像过A、B、C三点的二次函数的解析式,并求其对称轴;
(2)求图像过点E、F的一次函数的解析式。
解:(1)由直角三角形的知识易得点A(-3√3, 0)、B(√3, 0),由待定系数法可求得二次函数解析式为
,对称轴是√3
(2)连结、,则,。过E、F分别作x、y轴的垂线,垂足为M、N、P、G,易求得E 、F ,由待定系数法可求得一次函数解析式为
十二. 方程型
例12. 若方程x2+31=0的两根分别为,求经过点P
和Q 的一次函数图像的解析式
解:由根与系数的关系得
点P(11, 3)、Q(-11, 11)
设过点P、Q的一次函数的解析式为则有
解得 故这个一次函数的解析式为
十三. 综合型
例13. 已知抛物线(92)x2-2(3)3m的顶点D在双曲线上,直线经过点D和点C(a, b)且使y随x的增大而减小,a、b满足方程组,求这条直线的解析式。
解:由抛物线(92)x2-2(3)3m的顶点D
在双曲线上,可求得抛物线的解析式为:y17x2+1412,顶点D1(1, -5)及y227x2+1818
顶点D2
解方程组得, 即C1(-1, -4),C2(2, -1)
由题意知C点就是C1(-1, -4),所以过C1、D1的直线是;过C1、D2的直线是
函数问题1
已知正比例函数 ,则当k≠0时,y随x的增大而减小。
解:根据正比例函数的定义和性质,得 k<0。
函数问题2
已知点P1(x1,y1)、P2(x2,y2)是一次函数34的图象上的两个点,且y1>y2,则x1与x2的大小关系是( )
A. x1>x2 B. x1<x2 C. x12 D.无法确定
解:根据题意,知3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。
函数问题3
一次函数满足>0,且y随x的增大而减小,则此函数的图象不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
解:由>0,知k、b同号。因为y随x的增大而减小,所以k<0,从而b<0。故一次函数的图象经过第二、三、四象限,不经过第一象限。故选A .
函数问题4
一个弹簧,不挂物体时长12,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。如果挂上3物体后,弹簧总长是13.5,求弹簧总长是y()与所挂物体质量x()之间的函数关系式.如果弹簧最大总长为23,求自变量x的取值范围.
分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.
解:由题意设所求函数为12,则13.5=312 解之,0.5
∴y与x的函数关系式为0.512
由题意,得:23=0.51222 解之,22
∴自变量x的取值范围是0≤x≤22
函数问题5
某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省?
此题要考虑X的范围
解:设总费用为Y元,刻录X张,则电脑公司:Y1=8X 学校 :Y2=4120
当30时,Y12 , 当X>30时,Y1>Y2 , 当X<30时,Y1<Y2
函数问题6
(1)y与x成正比例函数,当 5时,2.5,求这个正比例函数的解析式.
(2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式.
解:(1)设所求正比例函数的解析式为 , 把 5,2.5代入上式 得 ,5=2.5k,解之,得2 ∴所求正比例函数的解析式为 2X
(2)设所求一次函数的解析式为
∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足 ,将1 、2和3、5 分别代入上式,得 25=3 解得 7/41/4
∴此一次函数的解析式为74+1/4
点评:(1) 不能化成带分数.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.
函数问题7
拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量t的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.
解: 函数关系式:20-5t,其中t的取值范围:0≤t≤4。图象是以(0,20)和(4,0)为端点的一条线段(图象略)。
点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.
函数问题8
已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.
分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.
解:设所求一次函数解析式为
∵点P的坐标为(-2,0) ∴2
设函数图象与y轴交于点B(0,m) 根据题意,SΔ3 ∴3
∴一次函数的图象与y轴交于B1(0,3)或B2(0,-3)
将P(-2,0)及B1(0,3);或P(-2,0)及B2(0,-3)的坐标代入中,得-20,3; 或-20,3。解得 1.5,3;或1.5,3。
∴所求一次函数的解析式为 1.53或1.5-3。
点评:(1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.
【考点指要】
一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
函数问题9
如果一次函数中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。
分析:因为函数的增减性不明确,所以分(1)K>0时,x=-2,y=—11;X=6,y=9。(2)K<0时,此时x=-2,y=9;X=6,y=—11。
【考点指要】
此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。
基本概念题
本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.
例1 下列函数中,哪些是一次函数?哪些是正比例函数?
(1); (2); (3)3-5x;
(4)5x2; (5)6 (6)(4)2.
[分析] 本题主要考查对一次函数及正比例函数的概念的理解.
解:(1)(3)(5)(6)是一次函数,(l)(6)是正比例函数.
例2 当m为何值时,函数(2)(4)是一次函数?
[分析] 某函数是一次函数,除应符合外,还要注意条件k≠0.
解:∵函数(2)(4)是一次函数,
∴ ∴2. ∴当2时,函数(2)(4)是一次函数.
小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.
基础知识应用题
本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.
例3 一根弹簧长15,它所挂物体的质量不能超过18,并且每挂1的物体,弹簧就伸长0.5,写出挂上物体后,弹簧的长度y()与所挂物体的质量x()之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.
[分析] (1)弹簧每挂1的物体后,伸长0.5,则挂的物体后,弹簧的长度y为(l5+0.5x),即15+0.5x.
(2)自变量x的取值范围就是使函数关系式有意义的x的值,即0≤x≤18.
(3)由15+0.5x可知,y是x的一次函数.
解:(l)15+0.5x.(2)自变量x的取值范围是0≤x≤18.(3)y是x的一次函数.
学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米/时,则火车离库尔勒的距离s(千米)与行驶时间t(时)之间的函数关系式是 .
老师评一评 研究本题可采用线段图示法,如图11-19所示.
火车从乌鲁木齐出发,t小时所走路程为58t千米,此时,距离库尔勒的距离为s千米,故有58600,所以,600-58t.
例4 某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:2-5100(其中0表示中午12时,1表示下午1时),则上午10时此物体的温度为 ℃.
[分析] 本题给出了函数关系式,欲求函数值,但没有直接给出t的具体值.从题中可以知道,0表示中午12时,1表示下午1时,则上午10时应表示成2,当2时,(-2)3-5×(-2)+100=102(℃). 答案:102
例5 已知3与x成正比例,且2时,7.
(1)写出y与x之间的函数关系式;(2)当4时,求y的值;(3)当4时,求x的值.
[分析] 由3与x成正比例,则可设3,由2,7,可求出k,则可以写出关系式.
解:(1)由于3与x成正比例,所以设3.
把2,7代入3中,得7-3=2k, ∴k=2.
∴y与x之间的函数关系式为3=2x,即23.
(2)当4时,2×4+3=11.
(3)当y=4时,4=23,∴.
学生做一做 已知y与1成正比例,当5时,12,则y关于x的函数关系式是 .
老师评一评 由y与1成正比例,可设y与x的函数关系式为(1).
再把5,12代入,求出k的值,即可得出y关于x的函数关系式.
设y关于x的函数关系式为(1).∵当5时,12,
∴12=(5+1)k,∴2.∴y关于x的函数关系式为22.
【注意】 y与1成正比例,表示(1),不要误认为1.
例6 若正比例函数(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是( )
A.m﹤O B.m>0 C.m﹤ D.m>M
[分析] 本题考查正比例函数的图象和性质,因为当x1<x2时,y1>y2,说明y随x的增大而减小,所以1-2m﹤O,∴m>,故正确答案为D项.
学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元.
(1)写出年产值y(万元)与年数x(年)之间的函数关系式;
(2)画出函数的图象;(3)求5年后的产值.
老师评一评 (1)年产值y(万元)与年数x(年)之间的函数关系式为15+2x.
(2)画函数图象时要特别注意到该函数的自变量取值范围为x≥0,因此,函数15+2x的图象应为一条射线.
画函数12+5x的图象如图11-21所示.
(3)当5时,y=15+2×5=25(万元) ∴5年后的产值是25万元.
例7 已知一次函数的图象如图11-22所示,求函数表达式.
[分析] 从图象上可以看出,它与x轴交于点(-1,0),与y轴交于点(0,-3),代入关系式中,求出k为即可.
解:由图象可知,图象经过点(-1,0)和(0,-3)两点,代入到中,得
∴ ∴此函数的表达式为33.
例8 求图象经过点(2,-1),且与直线21平行的一次函数的表达式.
[分析] 图象与21平行的函数的表达式的一次项系数为2,则可设此表达式为2,再将点(2,-1)代入,求出b即可.
解:由题意可设所求函数表达式为2,
∴图象经过点(2,-1),∴2×2.∴5,
∴所求一次函数的表达式为25.
综合应用题
本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.
例8 已知与(a,b为是常数)成正比例.
(1)y是x的一次函数吗?请说明理由;
(2)在什么条件下,y是x的正比例函数?
[分析] 判断某函数是一次函数,只要符合(k,b中为常数,且k≠0)即可;判断某函数是正比例函数,只要符合(k为常数,且k≠0)即可.
解:(1)y是x的一次函数.
∵与是正比例函数,∴设()(k为常数,且k≠0)
整理得().
∵k≠0,k,a,b为常数,∴()是一次函数.
(2) 当0,即时,y是x的正比例函数.
例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.
(1)写出y1,y2与x之间的关系;
(2)一个月内通话多少分时,两种通讯方式的费用相同?
(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?
[分析] 这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论.
解:(1)y1=50+0.4x(其中x≥0,且x是整数) y2=0.6x(其中x≥0,且x是整数)
(2)∵两种通讯费用相同, ∴y12,
即50+0.40.6x. ∴x=250.
∴一个月内通话250分时,两种通讯方式的费用相同.
(3)当y1=200时,有200=50+0.4x,
∴375(分). ∴“全球通”可通话375分.
当y2=200时,有200=0.6x, ∴333(分).
∴“神州行”可通话333分. ∵375>333,∴选择“全球通”较合算.
例10 已知2与x成正比例,且2时,0.
(1)求y与x之间的函数关系式;
(2)画出函数的图象;
(3)观察图象,当x取何值时,y≥0?
(4)若点(m,6)在该函数的图象上,求m的值;
(5)设点P在y轴负半轴上,(2)中的图象与x
轴、y轴分别交于A,B两点,且S△4,求P点的
坐标.
[分析] 由已知2与x成正比例,可设2,
把2,0代入,可求出k,这样即可得到y与x之间的函数关系式,再根据函数图象及其性质进行分析,点(m,6)在该函数的图象上,把,6代入即可求出m的值.
解:(1)∵2与x成正比例,∴设2(k是常数,且k≠0)
∵当2时,0. ∴0+2=k·(-2),∴k=-1.
∴函数关系式为2,即2.
(2)列表;
x
0
-2
y
-2
0
描点、连线,图象如图所示.
(3)由函数图象可知,当x≤-2时,y≥0.∴当x≤-2时,y≥0.
(4)∵点(m,6)在该函数的图象上, ∴62, ∴m=-8.
(5)函数2分别交x轴、y轴于A,B两点,∴A(-2,0),B(0,-2).
∵S△··4, ∴.
∴点P与点B的距离为4. 又∵B点坐标为(0,-2),且P在y轴负半轴上,
∴P点坐标为(0,-6).
例11 已知一次函数(3)2k2+18.
(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?
(3)k为何值时,它的图象平行于直线?(4)k为何值时,y随x的增大而减小?
[分析] 函数图象经过某点,说明该点坐标适合方程;图象与y轴的交点在y轴上方,说明常数项b>O;两函数图象平行,说明一次项系数相等;y随x的增大而减小,说明一次项系数小于0.
解:(1)图象经过原点,则它是正比例函数.
∴ ∴k=-2. ∴当3时,它的图象经过原点.
(2)该一次函数的图象经过点(0,-2).
∴-22k2+18, 且3≠0, ∴±
∴当±时,它的图象经过点(0,-2)
(3)函数图象平行于直线, ∴31, ∴k=4.
∴当k=4时,它的图象平行于直线.
(4)∵随x的增大而减小, ∴3﹤O. ∴k>3.
∴当k>3时,y随x的增大而减小.
例12 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.
[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.
解:设过A,B两点的直线的表达式为.
由题意可知,
∴
∴过A,B两点的直线的表达式为2. ∴当4时,4-2=2.
∴点C(4,2)在直线2上.∴A(3,1), B(0,-2),C(4,2)在同一条直线上.
学生做一做 判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.
探索与创新题
主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.
例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:
(1)x从0开始逐渐增大时,28和6x哪一个的函数值先达到30?这说明了什么?
(2)直线与6的位置关系如何?
甲生说:“6x的函数值先达到30,说明6x比28的值增长得快.”
乙生说:“直线与6是互相平行的.”
你认为这两个同学的说法正确吗?
[分析] (1)可先画出这两个函数的图象,从图象中发现,当x>2时,6x>28,所以,6x的函数值先达到30.
(2)直线与6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的.
解:这两位同学的说法都正确.
例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.
(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;
(2)就学生人数讨论哪家旅行社更优惠.
[分析] 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论.
解:(1)甲旅行社的收费y甲(元)与学生人数x之间的函数关系式为
y甲=240+×240240+120x.
乙旅行社的收费y乙(元)与学生人数x之间的函数关系式为
y乙=240×60%×(1)=144144.
(2)①当y甲乙时,有240+120144144,
∴24x=96,∴4. ∴当4时,两家旅行社的收费相同,去哪家都可以.
②当y甲>y乙时,240+120x>144144,
∴24x<96,∴x<4. ∴当x﹤4时,去乙旅行社更优惠.
③当y甲﹤y乙时,有240+120x﹤140144,
∴24x>96,∴x>4. ∴当x>4时,去甲旅行社更优惠.
小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法.
学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;
(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.
老师评一评 先求出两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,再通过比较,探索出结论.
(1)甲方案的付款y甲(元)与所购买的水果量x(千克)之间的函数关系式为
y甲=9x(x≥3000);
乙方案的付款y乙(元)与所购买的水果量x(千克)之间的函数关系式为
y乙=8500O(x≥3000).
(2)有两种解法:
解法1:①当y甲乙时,有985000, ∴5000.
∴当5000时,两种方案付款一样,按哪种方案都可以.
②当y甲﹤y乙时,有9x﹤85000,
∴x<5000. 又∵x≥3000,
∴当3000≤x≤5000时,甲方案付款少,故采用甲方案.
③当y甲>y乙时,有9x>85000,
∴x>5000. ∴.当x>500O时,乙方案付款少,故采用乙方案.
解法2:图象法,作出y甲=9x和y乙=85000的函数图象,如图11-24所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y甲﹤y乙,即选择甲方案付款少;当购买量为5000千克时,y甲﹥y乙即两种方案付款一样;当购买量大于5000千克时,y甲>y乙,即选择乙方案付款最少.
【说明】 图象法是解决问题的
重要方法,也是考查学生读图能
力的有效途径.
例15 一次函数的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .
[分析] 本题分两种情况讨论:①当k>0时,y随x的增大而增大,则有:当3,5;当6时,2,把它们代入中可得
∴∴函数解析式为4.
②当k﹤O时则随x的增大而减小,则有:当3时,2;当6时,5,把它们代入+b中可得
∴∴函数解析式为3.
∴函数解析式为4,或3. 答案:4或3.
【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.
中考试题预测
例1 某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当20时160O;当3O时,200O.
(1)求y与x之间的函数关系式;
(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?
[分析] 设举办乒乓球比赛的费用y(元)与租用比赛场地等固定不变的费用b(元)和参加比赛的人数x(人)的函数关系式为(k≠0).
把20,1600;30,2000代入函数关系式,求出k,b的值,进而求出y与x之间的函数关系式,当50时,求出y的值,再求得y÷50的值即可.
解:(1)设y1,y2(k≠0,x>0), ∴.
又∵当20时,1600;当30时2000,
∴∴
∴y与x之间的函数关系式为40800(x>0).
(2)当50时,40×50+800=2800(元).∴每名运动员需支付2800÷50=56(元〕
答:每名运动员需支付56元.
例2 已知一次函数,当4时,y的值为9;当2时,y的值为-3.
(1)求这个函数的解析式。(2)在直角坐标系内画出这个函数的图象.
[分析] 求函数的解析式,需要两个点或两对x,y的值,把它们代入中,即可求出k在的值,也就求出这个函数的解析式,进而画出这个函数的图象.
解:(1)由题意可知
∴ ∴这个函数的解析式为21.
(2)列表如下:
x
0
y
1
0
描点、连线,如图11-26所示
即为21的图象.
例3 如图11-27所示,大拇指与小拇指
尽量张开时,两指尖的距离称为指距.某项研究
表明,一般情况下人的身高h是指距d的一次函
数,下表是测得的指距与身高的一组数据.
指距
20
21
22
23
身高
160
169
178
187
(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)
(2)某人身高为196,一般情况下他的指距应是多少?
[分析] 设h与d之间的函数关系式是(k≠0)
当d=20时,160;当21时169.
把这两对值代人得
∴
所以得出h与d之间的函数关系式,当196时,即可求出d.
解:(1)设h与d之间的函数关系式为(k≠0)
由题中图表可知当2O时16O;当21时,169.
把它们代入函数关系式,得∴
∴h与d之间的函数关系式是920.
(2)当196时,有196=920.∴d=24.
∴当某人的身高为196时,一般情况下他的指距是24.
例4 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那汽车距成都的路程s(千米)与行驶时间t(时)的函数关系用图象(如图11-28所示)表示应为( )
[分析] 本题主要考查函数关系式的表达及函数图象的知识,由题意可知,汽车距成都的路程s(千米)与行驶时间t(时)的函数关系式是400-100t,其中自变量t的取值范围是0≤t≤4,所以有0≤s≤400,因此这个函数图象应为一条线段,故淘汰掉D.又因为在400-100t中的100<0,∴s随t的增大而减小,所以正确答案应该是C.
小结 画函数图象时,要注意自变量的取值范围,尤其是对实际问题.
例5 已知函数:(1)图象不经过第二象限;(2)图象经过点(2,-5).请你写出一个同时满足(1)和(2)的函数关系式: .
[分析] 这是一个开放性试题,答案是不惟一的,因为点(2,-5)在第四象限,而图象又不经过第二象限,所以这个函数图象经过第一、三、四象限,只需在第一象限另外任意找到一点,就可以确定出函数的解析式.设经过第一、二、四象限的直线解析式为(k≠O),另外的一点为(4,3),把这两个点代入解析式中即可求出k,b.
∴∴413. 答案:y=413
【注意】 后面学习了反比例函数二次函数后可另行分析.
例6 人在运动时的心跳速率通常和人的年龄有关.如果用a表示一个人的年龄,用b表示正常情况下这个人运动时所能承受的每分心跳的最高次数,另么0.8(220).
(1)正常情况下,在运动时一个16岁的学生所能承受的每分心跳的最高次数是多少?
(2)一个50岁的人运动10秒时心跳的次数为20次,他有危险吗?
[分析] (1)只需求出当16时b的值即可.
(2)求出当50时b的值,再用b和20×=120(次)相比较即可.
解:(1)当16时,0.8(220-16)=163.2(次).
∴正常情况下,在运动时一个16岁的学生所能承受的每分心跳的最高次数是163.2次.
(2)当50时,0.8(220-50)=0.8×170=136(次),
表示他最大能承受每分136次.而20×=120﹤136,所以他没有危险.
∴一个50岁的人运动10秒时心跳的次数为20次,他没有危险.
例7 某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县.已知C,D两县运化肥到A,B两县的运费(元/吨)如下表所示.
(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;
(2)求最低总运费,并说明总运费最低时的运送方案.
[分析] 利用表格来分析C,D两县运到A,B两县的化肥情况如下表.
则总运费W(元)与x(吨)的函数关系式为
3540(90)+30(100)+45[60-(100)]=104800.
自变量x的取值范围是40≤x≤90.
解:(1)由C县运往A县的化肥为x吨,则C县运往B县的化肥为(100)吨.
D县运往A县的化肥为(90)吨,D县运往B县的化肥为(40)吨.
由题意可知
W=3540(90)+30(100)+45(40)=104800.
自变量x的取值范围为40≤x≤90.
∴总运费W(元)与x(吨)之间的函数关系式为w=1480O(40≤x≤9O).
(2)∵10>0,∴W随x的增大而增大.∴当40时,
W最小值=10×40+4800=5200(元).运费最低时,40,9050(吨),40=0(吨).
∴当总运费最低时,运送方案是:C县的100吨化肥40吨运往A县,60吨运往B县,D县的50吨化肥全部运往A县.
例8 2006年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降,图11-29是某水库的蓄水量V(万米2)与干旱持续时间t(天)之问的关系图,请根据此图回答下列问题.
(1) 该水库原蓄水量为多少万米2?持续干旱
10天后.水库蓄水量为多少万米3?
(2) 若水库存的蓄水量小于400万米3时,将发
出严重干旱警报,请问:持续干旱多少天后,将发
生严重干旱警报?
(3)按此规律,持续干旱多少天时,水库将干涸?
[分析] 由函数图象可知,水库的蓄水量V(万米2)与干旱时间t(天)之间的函数关系为一次函数,设一次函数的解析式是(k,b是常数,且k≠0).由图象求得这个函数解析式,进而求出本题(1)(2)(3)问即可.
解:设水库的蓄水量V(万米3)与干旱时间t(天)之间的函数关系式是
(k,b是常数,且0).
由图象可知,当10时,800;当30时,400.
把它们代入中,得∴
∴201000(0≤t≤50).
(1)当0时,20×0+1000=1000(万米2);
当10时,20×10+1000=800(万米3).
∴该水库原蓄水量为1000万米3,持续干旱10天后,水库蓄水量为800万米3.
(2)当V<400时,有-201000<400, ∴t>30,
∴当持续干旱30天后,将发生严重干旱警报.
(3)当0时,有-201000=0,∴t=50,
∴按此规律,持续干旱50天时,水库将干涸.
【说明】解决本题的关键是求出V与t之间的函数关系式.
例9 图11-30表示甲、乙两名选手在一次自行车越野赛中,路程y(千米)随时间x(分)变化的图象(全程),根据图象回答下列问题.
(1)当比赛开始多少分时,两人第一次相遇?
(2)这次比赛全程是多少千米?
(3)当比赛开始多少分时,两人第二次相遇?
[分析] 本题主要考查读图能力和运用函数图象解决实际问题的能力.解决本题的关键是写出甲、乙两人在行驶中,路程y(千米)随时间x(分)变化的函数关系式,其中:乙的函数图象为正比例函数,而甲的函数图象则是三段线段,第一段是正比例函数,第二段和第三段是一次函数,需分别求出.
解:(1)当15≤x<33时,设11,把(15,5)和(33,7)代入,解得k11=,
∴.∴.
当6时,有6,
∴24。
∴比赛开始24分时,两人第一次相遇.
(2)设,把(4,6)代入,得,
当48时,×48=12(千米)
∴这次比赛全程是12千米.
(3)当33≤x≤43时,设22,把(33,7)和(43,12)代入,
解得k2=,b2.∴.
解方程组得得 ∴38.
∴当比赛开始38分时,两人第二次相遇.
例10 如图11-31所示,已知直线3的图象与x轴、y轴交于A,B两点,直线l经过原点,与线段交于点C,把△的面积分为2:1的两部分,求直线l的解析式.
[分析] 设直线l的解析式为(k≠0),因为
l分△面积比为2:1,故分两种情况:
① S△:S△2:1;②S△:S△1:2.
求出C点坐标,就可以求出直线l的解析式.
解:∵直线3的图象与轴交于A,B两点.
∴A点坐标为(-3,0)点坐标为(0,3).
∴=3,3.∴S△·×3×3=.
设直线l的解析式为(k≠0).
∵直线l把△的面积分为2:1,直线l与线段交于点C
∴分两种情况来讨论:
①当S△△2:1时,设C点坐标为(x1,y1). 又∵S△△△,
∴S△3. 即S△··1×3×13.
∴y1=±2,由图示可知取y1=2.
又∵点C在直线上, ∴21+3,∴x11.
∴C点坐标为(-1,2). 把C点坐标(-1,2)代人中,得
21·k,∴k=-2. ∴直线l的解析式为2x.
②当S△△1:2时,设C点坐标为(x22).
又∵S△△△, ∴S△
即S△··2·3·2.
∴y2=±1,由图示可知取y2=1.
又∵点C在直线上, ∴12+3,∴x22.
把C点坐标(-2,1)代入中,得
展开阅读全文