资源描述
第一单元 小数的乘法
第1课时 小数乘整数
教学内容 :例1和例2、“做一做”,练习—第1~4题。
教学目标:
1、使学生理解小数乘整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的内在联系,渗透转化思想。
教学重点:小数乘整数的算理及计算方法。
教学难点:确定小数乘整数积的小数点位置的方法
教具:投影
教学过程:
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元
3.5元=3元5角 3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元
理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的?
把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小10倍
105角就等于10.5元
(6)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.72
× 5
(2)强调依照整数乘法用竖式计算。
(3) 示范: 0. 7 2 扩大100倍 7 2
× 5 × 5
3. 6 0 3 6 0
缩小100倍
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
●注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
13.5
× 2
2. 7 0
(6)小结小数乘整数计算方法
l 计算 7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?
怎样计算小数乘以整数?
① 先把小数扩大成整数;
② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
l 专项练习 练习一 4
二、运用
1、填空。
4.5 ( ) 0 .7 4 ( )
× 3 × 3 × 2 × 2
( ) 1 3 5 ( ) 1 4 8
2、做一做 书p3 2
三、体验: (1)今天我们学习了什么?(板书课题)
(2)小数乘以整数的计算方法是什么?
四、作业: 练习一 1、2、3
五、板书:
小数乘整数1
3.5元 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
例2
0. 7 2 扩大到它的100倍 7 2
× 5 × 5
3. 6 0 3 6 0
缩小到它的1/100
六、课后反思:
第二单元
单元教学目标
1.使学生掌握小数除法的计算方法,能正确地进行计算。
2.使学生会用“四舍五入法”截取商是小数的近似值,能结合实际情况用“进一法”和“去尾法” 截取商的近似值。初步认识循环小数、有限小数和无限小数。
3.使学生能用计算器探索计算规律,能应用探索出的规律进行一些小数乘除法的计算。
4.使学生会解决有关小数除法的简单实际问题,体会小数除法的应用价值。
第1课时 小数除以整数
教学内容 :教材第16页例1
教学目标:
1. 初步理解小数除以整数的计算方法,会计算小数除以整数。
2. 培养学生的分析能力和类推能力。
3. 体验所学知识与现实生活的联系,能应用所学知识解决生活中的简单问题,从中获得价值体验。
教学重点:理解并掌握小数除以整数的计算方法。
教学难点:理解商的小数点要与被除数的小数点对齐的道理。
教学过程:
一、复习准备
计算下面各题并说一说整数除法的计算方法.
2145÷15= 416÷32= 1380÷15=
二、导入新课:
情景图引入新课:同学们你们喜欢锻炼吗?经常锻炼对我们的身体有益,请看王鹏就坚持每天晨跑,请你根据图上信息提出一个数学问题?出示例1:王鹏坚持晨练。他计划4周跑步22.4千米,平均每周应跑多少千米?教师:求平均每周应跑多少千米,怎样列式?(22.4÷4)板书课题:“小数除以整数”。
三.教学新课:
教师:想一想,被除数是小数该怎么除呢?小组讨论。分组交流讨论情况:
(1) 生:22.4千米=22400米 22400÷4=5600米 5600米=5.6千米
(2) 还可以列竖式计算。
教师:请同学们试着用竖式计算。计算完后,交流自己计算的方法。
教师:请学生将自己计算的竖式在视频展示台上展示出来,具体说说你是怎样算的?
小数点位置与被除数小数点的位置有什么关系?
引导学生理解后回答“因为在除法算式里,除到被除数的哪一位,商就写在哪一位上面,也就是说,被除数和商的相同数位是对齐了的,只有把小数点对齐了,相同数位才对齐了,所以商的小数点要对着被除数的小数点”.
教师:同学们赞同这种说法吗?(赞同)老师也赞同他的分析.
教师:大家会用这种方法计算吗?(会)请同学们用这种方法算一算.
四、巩固练习
完成“做一做”:25.2÷6 34.5÷15
五、课堂小结(略)
六、课堂作业:练习三的第1、2题
课后反思:
第三单元 观察物体
单元教学目标:
1、使学生经历观察的过程,让学生认识到从不同的位置观察物体,所看到的形状是不同的。
2、通过观察实物,能正确辨认从正面、侧面、上面观察到的两个物体或一组立体图形的位置关系和形状。
3、通过拼搭活动,培养学生的空间想象和推理能力。
第1课时 观察物体(一)
教学内容 : P 38例1,练习八相关练习题(以不同角度观察一个物体)。
教学目标:
1、培养学生从不同角度观察,分析事物的能力。培养学生构建简单的空间想象力。
2、让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
3、使学生能够辨认从正面、左面和上面观察到的简单物体的形状。
教学重点:能从不同方向观察立体图形,看到不同的形状。
教学难点:辨认从各个不同面观察到的简单物体的形状。
教具学具:长方体、正方体、盒子等。
教学过程:
一、导入新课
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、新授课
教师将一个对面涂有相同颜色的长方体举起静止不动,叫生观察并提问。
1、你观察到的长方体是什么样的?
2、你至少能看到几个面,一次最多能看到几个面?
3、通过观察,我们发现了至少能看到长方体的一个面,也可能看到两个面,最多一次能看见三个不同的面,那么请四人小组讨论当我们看到两个或三个面的时候,这些面之间有什么联系呢?
抽小组汇报,师点评,“看到的面都是两个或三个相邻的面,不可能一次看到长方体相对的面,运用这个知识可以解答一些简单的数学推理问题”。
三:构建空间想象力
1、师出示一个正方体要求生正面观察,并想象画出从左面,从上面,从右面观察正方体的样子。
2、师再次出示一个一组对面是正方形的牙膏盒,给学生从不同角度先进行初步观察,再将牙膏盒横对着学生,要求学生想象画出正面右面上面牙膏盒的样子。
再将牙膏盒竖对着学生,要求学生想象画出正面右面上面看到牙膏盒的样子。
四:巩固练习
完成练习八的1-2题。
五:兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
2
1
3
1
4
5
5
6
3
课后反思:
四、简易方程
单元教学目标:
1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。初步学会根据字母所取的值,求含有字母式子的值。
2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程。
3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的实际问题。培养学生根据具体情况,灵活选择算法的意识和能力。
课时教学目标【共十六课时】
一,用字母表示数共三课时。
第1课时 用字母表示数(新授课)
教学内容:《义务教育课程标准实验教科书 数学》教材P44—46页中的例1、例2,例3,完成练习一中的部分练习题。
教学目标:
1.情感目标:在解决问题中体会数学与生活的联系,体会代数符号表示实际问题中数量关系的概括性和简洁性,从而进一步感受学习数学的价值。以“数学史”为载体,激发学生学习数学家不断解决新问题的探索精神。
2.知识目标:结合具体情境,能用字母表示运算定律和有关图形的面积和周长的计算公式,学会含有字母的乘法算式的简便写法。体会字母表示数的意义和作用,进一步发展符号感。
3.能力目标:培养学生观察、探索用字母表示数的过程,发展抽象概括能力。使学生养成认真、细心的学习习惯。
教学重点:探究用字母表示数,用含有字母的式子表示数量关系
教学难点:含有字母的乘法算式的简便写法
教学过程:
一、初步感知用字母表示数的意义
教学例1。
1、投影出示例1(1):
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在数学中,我们经常用字母来表示数。
问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程A、B两地,C大调…….
二、 新授:
1、学习用字母表示运算定律和性质的意义和方法。
教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、 b或 c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉?
看书45页“用字母表示………….”这一段。
(4)你还能用字母表示其它的运算定律和性质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律: 加法结合律:()()
乘法交换律:a××a 乘法结合律:(a×b)××(b×c)
乘法分配律:()××c+b×c
减法的性质:a-b--(b+c)
除法的性质:a÷b÷÷(b×c)
2、教学字母与字母书写。
引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)
a××a (a×b)××(b×c)
可以写成:a··a或 (a·b)··(b·c)或() ()
()××c+b×c
可以写成:()··c+b·c或()+
其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。
教学例3(1):
师:字母不但可以表示运算定律还可以表示公式、及数量关系。
用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?
2
(2)字母和数字之间的乘号省略后,谁写在前面?
师强调:a 表示两个a相乘,读作a的平方;
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。
x×x m×m 0.1×0.1 a×6 3×n χ×8 a×c
教学例3(2):
学生自学并完成相关练习。两生板演。师强调书写格式。
三、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题 先独立解答后,再集体评议。
四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)
板书: 用字母表示数(一)
乘法交换律:a××a ×a ×4
可以写成: a··a或 S =a2 4a
2. 解简易方程
第1课时“方程的意义(一)” (新授课)
教学内容:《义务教育课程标准实验教科书 数学》(人教版)五年级上册第53-54页。
教学目标:
1、情感目标:激发学生的表达欲望,培养学生善于探索的精神。渗透爱国主义教育,树立民族自豪感。
2、知识目标:通过演示和对简易天平的实际操作,观察,探索等式的基本性质、从等式出发初步理解方程的意义,会判断是不是方程。
3、能力目标:通过简单的天平实验理解并掌握等式的基本性质。结合教学内容,培养概括、推理的能力。
教学重点:建立方程的概念。
教学难点:帮助学生建立“方程”的概念,并会应用
教具准备:天平、空水杯、水(可根据实际变换为其它实物)
教学过程:
一、导入新课:今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
二、新知学习
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100<300.
第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。
1、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
1、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
2、小结:这节课学习了什么?怎么判断一个式子是不是方程?
提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
四:练习
1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
五、作业:练习十一第1题。
课后反思:
第4课时“解方程(一)”(新授课)
教学内容:《义务教育课程标准实验教科书 数学》(人教版)五年级上册第57页。
教学目标:
1、情感目标:组织营造课堂中的学习氛围,让学生在平等、尊重、信任和宽容中受到激励和鼓舞。
2、知识目标:进一步理解等式的基本性质,并能利用等式的基本性质,推导出求方程解的过程。在解题中能正确区别“方程的解”和“解方程”的概念。
3、能力目标:能积极主动的参与观察、分析、交流等探究活动,培养抽象概括能力。
树立信心。
教学重点:解方程。
教学难点:理解方程的解。
教学过程:
一、导入新课
前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
二、新知学习
(一)教学例1
出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到3=9
要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:3-3=9-3
化简,即得: 6
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边3
=6+3
=9
=方程右边
所以, 6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二教学例2
利用等式不变的规律,我们再来解一个方程。
出示方程:318,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三)反馈练习
1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。
2、 思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。
试着解方程:2.4=6 x÷9=0.7 (强调验算)
(四) 课堂作业:“做一做”第2题。
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5—7题。
课后反思:
第1课时 平行四边形的面积(新授课)
教学内容:教材P79页本单元教学主题图;课本P80-81页的教学内容。
教学目标:
1.情感目标:(1)渗透转化的数学思想方法;
(2)使学生在探索平行四边形面积的计算方法,获得成功的经验,形成积极的数学学习情感。
2.知识目标:(1)使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积的计算公式,并能应用公式正确计算平行四边形的面积。
(2)能应用平行四边形的面积计算公式解决相应的实际问题。
3.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、比较、归纳等数学活动过程,体会“等积变形”的思想方法,培养空间观念,发展初步的推理能力。
教学重点:探索并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程,并能正确应用平行四边形的面积计算公式解决相应的实际问题。
学具准备:每个学生准备一个平行四边形。
教学过程:
一、复习
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、 这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、 请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、 这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、 然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等” ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、 学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等( )
(2)平行四边形底越长,它的面积就越大( )
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
×h ·h或
课后反思:
第3课时 三角形的面积(新授课)
教学内容:教材P84-85页的教学内容。
教学目标:
1.情感目标:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
2.知识目标:(1)探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题;
(2)培养学生应用已有知识解决新问题的能力。
3.能力目标:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
教学重点: 探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点: 理解三角形面积公式的推导过程。
学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程:
一、激发:1.出示平行四边形
1.5厘米
2厘米
提问:(1)这是什么图形?怎样计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
4.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
5.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
6.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
7、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?
(二)教学例1
红领巾的底是100,高33,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
四、反馈练习
(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.
(二)计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
3.底是1.8米,高是.1.2米;
(三) 判断
1、 一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
2、等底等高的两个三角形,面积一定相等。 ( )
3、两个三角形一定可以拼成一个平行四边形。 ( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )
五、作业:85页做一做和练习十六1题
板书设计:
三角形面积的计算
因为:平行四边形的面积=底×高, 例1… …
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650()
所以三角形面积=底×高÷2
÷2
课后反思:
第5课时 梯形的面积(新授课)
教学内容:教材P88-89页的教学内容。
教学目标:
1.情感目标:让学生在探索活动中获得成功的体验,进一步培养学生学习数学的兴趣。
2.知识目标:(1)探索并掌握梯形的面积公式,能正确计算梯形的面积,并能应用公式解决简单的实际问题;
(2)进一步培养学生操作能力以及应用已有的知识和方法解决新问题的能力。
3.能力目标:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
教学重点: 探索并掌握梯形的面积公式,能正确计算梯形的面积。
教学难点: 理解梯形面积公式的推导过程;理解梯形面积公式中为什么要“÷2”的道理。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“()h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
4.全课小结。 (略)
课后反思:
7课时 组合图形的面积(新授课)
教学内容:教材P92-93页的教学内容。
教学目标:
1.情感目标:(1)结合具体的题例,感受计算组合图形的必要性,产生积极的数学学习情感。
(2)渗透转化的数学思想和方法。
2.知识目标:(1)认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积;
(2)能运用所学的知识,解决生活中有关组合图形面积的实际问题。
3.能力目标:(1)让学生在观察、例举中认识简单的组合图形,在尝试、交流中探索组合图形面积的计算方法;
(2)学会用分割法和添补法计算组合图形的面积。
教学重点: 探索并掌握组合图形面积的计算方法。
教学难点: 理解并掌握用分割法和添补法计算组合图形的面积。
教学过程:
一、 复习。
“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=
“第二个图形呢?”
……
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.
教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内
展开阅读全文