收藏 分销(赏)

西方经济学(微观部分)第四版(主编高鸿业)习题复习资料.doc

上传人:丰**** 文档编号:9739611 上传时间:2025-04-05 格式:DOC 页数:105 大小:757.04KB
下载 相关 举报
西方经济学(微观部分)第四版(主编高鸿业)习题复习资料.doc_第1页
第1页 / 共105页
西方经济学(微观部分)第四版(主编高鸿业)习题复习资料.doc_第2页
第2页 / 共105页
点击查看更多>>
资源描述
第二章练习题参考答案 1.已知某一时期内某商品的需求函数为50-5P,供给函数为10+5p。 (1) 求均衡价格和均衡数量 ,并作出几何图形。 (2) 假定供给函数不变,由于消费者收入水平提高,使需求函数变为60-5P。求出相应的均衡价格和均衡数量,并作出几何图形。 (3) 假定需求函数不变,由于生产技术水平提高,使供给函数变为5+5p。求出相应的均衡价格和均衡数量,并作出几何图形。 (4) 利用(1)(2)(3),说明静态分析和比较静态分析的联系和区别。 (5) 利用(1)(2)(3),说明需求变动和供给变动对均衡价格和均衡数量的影响. 解答:(1)将需求函数50-5P和供给函数10+5P代入均衡条件, 有: 50-510+5P 得: 6 以均衡价格6代入需求函数 50-5p ,得50-5*6=20 或者,以均衡价格 =6 代入供给函数10+5P ,得10+5 所以,均衡价格和均衡数量分别为 =6 , 20 ...如图1-1所示. (2) 将由于消费者收入提高而产生的需求函数60-5p和原供给函数10+5P, 代入均衡条件,有: 60-510=5P 得 7 以均衡价格7代入60-5p ,得60-5*7=25 或者,以均衡价格7代入10+5P, 得10+5*7=25 所以,均衡价格和均衡数量分别为7,25 (3) 将原需求函数50-5p 和由于技术水平提高而产生的供给函数5+5p ,代入均衡条件,有: 50-55+5P 得 5.5 以均衡价格5.5代入50-5p ,得 50-5*5.5=22.5 或者,以均衡价格5.5代入5+5P ,得5+5*5.5=22.5 所以,均衡价格和均衡数量分别为5.5,22.5.如图1-3所示. (4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图1-1中,均衡点E就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数 10+5P和需求函数50-5p表示,均衡点E具有的特征是:均衡价格6且当6时,有20;同时,均衡数量20,切当20时,有.也可以这样来理解静态分析:在外生变量包括需求函数的参数(505)以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分别为6,20 依此类推,以上所描素的关于静态分析的基本要点,在(2)及其图1-2和(3)及其图1-3中的每一个单独的均衡点(1,2)都得到了体现.而所谓的比较静态分析是考察当所有的条件发生变化时,原有的均衡状态会发生什么变化,并分析比较新旧均衡状态.也可以说,比较静态分析是考察在一个经济模型中外生变量变化时对内生变量的影响,并分析比较由不同数值的外生变量所决定的内生变量的不同数值,以(2)为例加以说明.在图1-2中,由均衡点 变动到均衡点 ,就是一种比较静态分析.它表示当需求增加即需求函数发生变化时对均衡点的影响.很清楚,比较新.旧两个均衡点 和 可以看到:由于需求增加由20增加为25.也可以这样理解比较静态分析:在供给函数保持不变的前提下,由于需求函数中的外生变量发生变化,即其中一个参数值由50增加为60,从而使得内生变量的数值发生变化,其结果为,均衡价格由原来的6上升为7,同时,均衡数量由原来的20增加为25. 类似的,利用(3)及其图1-3也可以说明比较静态分析方法的基本要求. (5)由(1)和(2)可见,当消费者收入水平提高导致需求增加,即表现为需求曲线右移时,均衡价格提高了,均衡数量增加了. 由(1)和(3)可见,当技术水平提高导致供给增加,即表现为供给曲线右移时,均衡价格下降了,均衡数量增加了. 总之,一般地有,需求与均衡价格成同方向变动,与均衡数量成同方向变动;供给与均衡价格成反方向变动,与均衡数量同方向变动. 2 假定表2—5是需求函数500-100P在一定价格范围内的需求表: 某商品的需求表 价格(元) 1 2 3 4 5 需求量 400 300 200 100 0 (1)求出价格2元和4元之间的需求的价格弧弹性。 (2)根据给出的需求函数,求2是的需求的价格点弹性。 (3)根据该需求函数或需求表作出相应的几何图形,利用几何方法求出2时的需求的价格点弹性。它与(2)的结果相同吗? 解(1)根据中点公式 有:(200/2){[(2+4)/(2)]/[(300+100)/(2)]}=1.5 (2) 由于当2时,500-100*2=300,所以,有: (-100)*(2/3)=2/3 (3)根据图1-4在a点即,2时的需求的价格点弹性为: 或者 显然,在此利用几何方法求出2时的需求的价格弹性系数和(2)中根据定义公式求出结果是相同的,都是2/3。 3 假定下表是供给函数2+2P 在一定价格范围内的供给表。 某商品的供给表 价格(元) 2 3 4 5 6 供给量 2 4 6 8 10 (1) 求出价格3元和5元之间的供给的价格弧弹性。 (2) 根据给出的供给函数,求3时的供给的价格点弹性。 (3) 根据该供给函数或供给表作出相应的几何图形,利用几何方法求出3时的供给的价格点弹性。它与(2)的结果相同吗? 解(1) 根据中点公式 有: 4/3 (2) 由于当3时,2+2,所以=2*(3/4)=1.5 (3) 根据图1-5,在a点即3时的供给的价格点弹性为:1.5 显然,在此利用几何方法求出的3时的供给的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是1.5 4图1-6中有三条线性的需求曲线、、。 (1)比较a、b、c三点的需求的价格点弹性的大小。 (2)比较 a、f、e三点的需求的价格点弹性的大小。 解 (1) 根据求需求的价格点弹性的几何方法,可以很方便地推知:分别处于不同的线性需求曲线上的a、b、e三点的需求的价格点弹性是相等的.其理由在于,在这三点上,都有: (2)根据求需求的价格点弹性的几何方法,同样可以很方便地推知:分别处于三条线性需求曲线上的三点的需求的价格点弹性是不相等的,且有 <<其理由在于: 在a点有, 在 f点有, 在e点有, 在以上三式中, 由于<< 所以<< 5 假定某消费者关于某种商品的消费数量Q与收入M之间的函数关系为100Q2。求:当收入6400时的需求的收入点弹性。 解:由以知条件100 Q2 可得√100 于是,有: 进一步,可得: 观察并分析以上计算过程即其结果,可以发现,当收入函数2 (其中a>0为常数)时,则无论收入M为多少,相应的需求的点弹性恒等于1/2. 6 假定需求函数为,其中M表示收入,P表示商品价格,N(N>0)为常数。求:需求的价格点弹性和需求的收入点弹性。 解 由以知条件 可得: 由此可见,一般地,对于幂指数需求函数Q(P)= 而言,其需求的价格价格点弹性总等于幂指数的绝对值N.而对于线性需求函数Q(P)= 而言,其需求的收入点弹性总是等于1. 7 假定某商品市场上有100个消费者,其中,60个消费者购买该市场1/3的商品,且每个消费者的需求的价格弹性均为3:另外40个消费者购买该市场2/3的商品,且每个消费者的需求的价格弹性均为6。求:按100个消费者合计的需求的价格弹性系数是多少? 解: 另在该市场上被100个消费者购得的该商品总量为Q,相应的市场价格为P。根据题意,该市场的1/3的商品被60个消费者购买,且每个消费者的需求的价格弹性都是3,于是,单个消费者i的需求的价格弹性可以写为; () 即 32 (1,2……60) (1) 且 (2) 相类似的,再根据题意,该市场1/3的商品被另外40个消费者购买,且每个消费者的需求的价格弹性都是6,于是,单个消费者j的需求的价格弹性可以写为: ()*()=6 即6(1,2……40) (3) 且 (4) 此外,该市场上100个消费者合计的需求的价格弹性可以写为: 将(1)式、(3)式代入上式,得: 再将(2)式、(4)式代入上式,得: 所以,按100个消费者合计的需求的价格弹性系数是5。 8 假定某消费者的需求的价格弹性1.3,需求的收入弹性2.2 。求:(1)在其他条件不变的情况下,商品价格下降2%对需求数量的影响。 (2)在其他条件不变的情况下,消费者收入提高5%对需求数量的影响。 解 (1) 由于题知,于是有: 所以当价格下降2%时,商需求量会上升2.6%. (2)由于 ,于是有: 即消费者收入提高5%时,消费者对该商品的需求数量会上升11%。 9 假定某市场上A、B两厂商是生产同种有差异的产品的竞争者;该市场对A厂商的需求曲线为200,对B厂商的需求曲线为300-0.5× ;两厂商目前的销售情况分别为50,100。 求:(1)A、B两厂商的需求的价格弹性分别为多少? (2) 如果B厂商降价后,使得B厂商的需求量增加为160,同时使竞争对手A厂商的需求量减少为40。那么,A厂商的需求的交叉价格弹性是多少? (3) 如果B厂商追求销售收入最大化,那么,你认为B厂商的降价是一个正确的选择吗? 解(1)关于A厂商:由于200-50=150且A厂商的 需求函数可以写为; 200 于是 关于B厂商:由于300-0.5×100=250 且B厂商的需求函数可以写成: 600 于是厂商的需求的价格弹性为: (2) 当1=40时,1=200-40=160且 当1=300-0.5×160=220且 所以 (4) 由(1)可知厂商在250时的需求价格弹性为5,也就是说,对于厂商的需求是富有弹性的.我们知道,对于富有弹性的商品而言,厂商的价格和销售收入成反方向的变化,所以厂商将商品价格由250下降为1=220,将会增加其销售收入.具体地有: 降价前,当250且100时厂商的销售收入为: ·250·100=25000 降价后,当1=220且1=160时厂商的销售收入为: 11·1=220·160=35200 显然, < 1,即B厂商降价增加了它的收入,所以,对于B厂商的销售收入最大化的目标而言,它的降价行为是正确的. 10 假定肉肠和面包是完全互补品.人们通常以一根肉肠和一个面包卷为比率做一个热狗,并且以知一根肉肠的价格等于一个面包的价格 . (1)求肉肠的需求的价格弹性. (2)求面包卷对肉肠的需求的交叉弹性. (3)如果肉肠的价格面包的价格的两倍,那么,肉肠的需求的价格弹性和面包卷对肉肠的需求的交叉弹性各是多少? 解:(1)令肉肠的需求为X,面包卷的需求为Y,相应的价格为, , 且有,. 该题目的效用最大化问题可以写为: U(){}, 其实就是, 因为人们买热狗时是同时买一个肉肠和一个面包卷. . 解上速方程组有() 由此可得肉肠的需求的价格弹性为: 由于一根肉肠和一个面包卷的价格相等,即,所以,进一步,有()=1/2 (2)面包卷对肉肠的需求的交叉弹性为: 由于一根肉肠和一个面包卷的价格相等,所以,进一步, ()1/2 (3)如果2,.则根据上面(1),(2)的结果,可得肉肠的需求的价格弹性为: 面包卷对肉肠的需求的交叉弹性为: 11 利用图阐述需求的价格弹性的大小与厂商的销售收入之间的关系,并举例加以说明。 a) 当>1时,在a点的销售收入P·Q相当于面积11, b点的销售收入P·Q相当于面积22.显然,面积11〈 面积22。 所以当>1时,降价会增加厂商的销售收入,提价会减少厂商的销售收入,即商品的价格与厂商的销售收入成反方向变动。 例:假设某商品2,当商品价格为2时,需求量为20。厂商的销售收入为2×20=40。当商品的价格为2.2,即价格上升10%,由于2,所以需求量相应下降20%,即下降为16。同时, 厂商的销售收入=2.2×1.6=35.2。显然,提价后厂商的销售收入反而下降了。 b) 当〈 1时,在a点的销售收入P·Q相当于面积11, b点的销售收入P·Q相当于面积22.显然,面积11 〉面积22。 所以当〈1时,降价会减少厂商的销售收入,提价会增加厂商的销售收入,即商品的价格与厂商的销售收入成正方向变动。 例:假设某商品0.5,当商品价格为2时,需求量为20。厂商的销售收入为2×20=40。当商品的价格为2.2,即价格上升10%,由于0.5,所以需求量相应下降5%,即下降为19。同时,厂商的销售收入=2.2×1.9=41.8。显然,提价后厂商的销售收入上升了。 c) 当1时,在a点的销售收入P·Q相当于面积11, b点的销售收入P·Q相当于面积22.显然,面积11= 面积22。 所以当1时,降低或提高价格对厂商的销售收入没有影响。 例:假设某商品1,当商品价格为2时,需求量为20。厂商的销售收入为2×20=40。当商品的价格为2.2,即价格上升10%,由于1,所以需求量相应下降10%,即下降为18。同时, 厂商的销售收入=2.2×1.8=39.6≈40。显然,提价后厂商的销售收入并没有变化。 12 利用图简要说明微观经济学的理论体系框架和核心思想。 解:要点如下: (1) 关于微观经济学的理论体系框架. 微观经济学通过对个体经济单位的经济行为的研究,说明现代西方经济社会市场机制的运行和作用,以及这种运行的途径,或者,也可以简单的说,微观经济学是通过对个体经济单位的研究来说明市场机制的资源配置作用的. 市场机制亦可称价格机制,其基本的要素是需求,供给和均衡价格. 以需求,供给和均衡价格为出发点,微观经济学通过效用论研究消费者追求效用最大化的行为,并由此推导出消费者的需求曲线,进而得到市场的需求曲线.生产论.成本论和市场论主要研究生产者追求利润最大化的行为,并由此推导出生产者的供给曲线, 进而得到市场的供给曲线.运用市场的需求曲线和供给曲线,就可以决定市场的均衡价格,并进一步理解在所有的个体经济单位追求各自经济利益的过程中,一个经济社会如何在市场价格机制的作用下,实现经济资源的配置.其中,从经济资源配置的效果讲,完全竞争市场最优,垄断市场最差,而垄断竞争市场比较接近完全竞争市场,寡头市场比较接近垄断市场.至此,微观经济学便完成了对图1-8中上半部分所涉及的关于产品市场的内容的研究.为了更完整地研究价格机制对资源配置的作用,市场论又将考察的范围从产品市场扩展至生产要素市场. 生产要素的需求方面的理论,从生产者追求利润最大的化的行为出发,推导生产要素的需求曲线; 生产要素的供给方面的理论, 从消费者追求效用最大的化的角度出发, 推导生产要素的供给曲线.据此,进一步说明生产要素市场均衡价格的决定及其资源配置的效率问题.这样,微观经济学便完成了对图1-8中下半部分所涉及的关于生产要素市场的内容的研究. 在以上讨论了单个商品市场和单个生产要素市场的均衡价格决定及其作用之后,一般均衡理论讨论了一个经济社会中所有的单个市场的均衡价格决定问题,其结论是: 在完全竞争经济中,存在着一组价格(P12),使得经济中所有的N个市场同时实现供求相等的均衡状态.这样,微观经济学便完成了对其核心思想即看不见的手原理的证明. 在上面实现研究的基础上,微观经济学又进入了规范研究部分,即福利经济学.福利经济学的一个主要命题是:完全竞争的一般均衡就是帕累托最优状态.也就是说,在帕累托最优的经济效率的意义上,进一步肯定了完全竞争市场经济的配置资源的作用. 在讨论了市场机制的作用以后,微观经济学又讨论了市场失灵的问题.为了克服市场失灵产生的主要原因包括垄断.外部经济.公共物品和不完全信息. 为了克服市场失灵导致的资源配置的无效率,经济学家又探讨和提出了相应的微观经济政策。 (2) 关于微观经济学的核心思想。 微观经济学的核心思想主要是论证资本主义的市场经济能够实现有效率的资源配置。通过用英国古典经济学家亚当 斯密在其1776年出版的《国民财富的性质和原因的研究》一书中提出的、以后又被称为“看不见的手”原理的那一段话,来表述微观经济学的核心思想2原文为:“每个人力图应用他的资本,来使其产品能得到最大的价值。一般地说,他并不企图增进增加公共福利,也不知道他所增进的公共福利为多少。他所追求的仅仅是他个人的安乐,仅仅是他个人的利益。在这样做时,有一只看不见的手引导他去促进一种目标,而这种目标绝不是他所追求的东西。由于他追逐他自己的利益,他经常促进了社会利益,其效果要比其他真正促进社会利益时所得到的效果为大。 第三章练习题参考答案 1、已知一件衬衫的价格为80元,一份肯德鸡快餐的价格为20元,在某消费者关于这两种商品的效用最大化的均衡点上,一份肯德鸡快餐对衬衫的边际替代率是多少? 解:按照两商品的边际替代率的定义公式,可以将一份肯德鸡快餐对衬衫的边际替代率写成: 其中表示肯德鸡快餐的份数表示衬衫的件数; 表示在维持效用水平不变的前提下, 消费者增加一份肯德鸡快餐时所需要放弃的衬衫消费数量。 在该消费者实现关于这两件商品的效用最大化时,在均衡点上有 即有 =20/80=0.25 它表明:在效用最大化的均衡点上,消费者关于一份肯德鸡快餐对衬衫的边际替代率为0.25。 2 假设某消费者的均衡如图1-9所示。其中,横轴1和纵轴2,分别表示商品1和商品2的数量,线段为消费者的预算线,曲线U为消费者的无差异曲线,E点为效用最大化的均衡点。已知商品1的价格P1=2元。 (1) 求消费者的收入; (2) 求上品的价格P2; (3) 写出预算线的方程; (4)求预算线的斜率; (5)求E点的12的值。 解: (1)图中的横截距表示消费者的收入全部购买商品1的数量为30单位,且已知P1=2元,所以,消费者的收入2元×30=60。 (2)图中的纵截距表示消费者的收入全部购买商品2的数量为20单位,且由(1)已知收入60元,所以,商品2的价格P2斜率=-P12=-2/3,得P2/20=3元 (3)由于预算线的一般形式为:P1X12X2 所以,由(1)、(2)可将预算线方程具体写为2X1+3X2=60。 (4)将(3)中的预算线方程进一步整理为X22/3 X1+20。很清楚,预算线的斜率为-2/3。 (5)在消费者效用最大化的均衡点E上,有12= = 1212,即无差异曲线的斜率的绝对值即等于预算线的斜率绝对值P12。因此,在1212 = 2/3。 3 请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲线,同时请对(2)和(3)分别写出消费者B和消费者C的效用函数。 (1)消费者A喜欢喝咖啡,但对喝热茶无所谓。他总是喜欢有更多杯的咖啡,而从不在意有多少杯的热茶。 (2)消费者B喜欢一杯咖啡和一杯热茶一起喝,他从来不喜欢单独只喝咖啡,或者只不喝热茶。 (3)消费者C认为,在任何情况下,1杯咖啡和2杯热茶是无差异的。 (4)消费者D喜欢喝热茶,但厌恶喝咖啡。 解答:(1)根据题意,对消费者A而言,热茶是中性商品,因此,热茶的消费数量不会影响消费者A的效用水平。消费者A的无差异曲线见图 (2)根据题意,对消费者B而言,咖啡和热茶是完全互补品,其效用函数是{ X1、X2}。消费者B的无差异曲线见图 (3)根据题意,对消费者C而言,咖啡和热茶是完全替代品,其效用函数是2 X1+ X2。消费者C的无差异曲线见图 (4)根据题意,对消费者D而言,咖啡是厌恶品。消费者D的无差异曲线见图 4已知某消费者每年用于商品1和的商品2的收入为540元,两商品的价格分别为P1=20元和P2=30元,该消费者的效用函数为,该消费者每年购买这两种商品的数量应各是多少?从中获得的总效用是多少? 解:根据消费者的效用最大化的均衡条件: 1212 其中,由可得: 11 =3X22 22 =6X1X2 于是,有: (1) 整理得 将(1)式代入预算约束条件20X1+30X2=540,得:X1=9,X2=12 因此,该消费者每年购买这两种商品的数量应该为: 5、假设某商品市场上只有A、B两个消费者,他们的需求函数各自为和。 (1)列出这两个消费者的需求表和市场需求表; 根据(1),画出这两个消费者的需求曲线和市场需求曲线。 解:(1)A消费者的需求表为: P 0 1 2 3 4 5 20 16 12 8 4 0 B消费者的需求表为: P 0 1 2 3 4 5 6 30 25 20 15 10 5 0 市场的需求表为: P 0 1 2 3 4 5 6 50 41 32 23 14 5 0 (2)A消费者的需求曲线为:图略 B消费者的需求曲线为:图略 市场的需求曲线为:图略 6、 假定某消费者的效用函数为,两商品的价格分别为P1,P2,消费者的收入为M。分别求出该消费者关于商品1和商品2的需求函数。 解答:根据消费者效用最大化的均衡条件: 1212 其中,由以知的效用函数 可得: 于是,有: 整理得: 即有 (1) 一(1)式代入约束条件P1X12X2,有: 解得: 代入(1)式得 所以,该消费者关于两商品的需求函数为 7、令某消费者的收入为M,两商品的价格为P1,P2。假定该消费者的无差异曲线是线性的,切斜率为。 求:该消费者的最优商品组合。 解:由于无差异曲线是一条直线,所以该消费者的最优消费选择有三种情况,其中的第一、第二种情况属于边角解。 第一种情况:当12>P12时,即a> P12时,如图,效用最大的均衡点E的位置发生在横轴,它表示此时的最优解是一个边角解,即 X11,X2=0。也就是说,消费者将全部的收入都购买商品1,并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。 第二种情况:当12<P12时,a< P12时,如图,效用最大的均衡点E的位置发生在纵轴,它表示此时的最优解是一个边角解,即 X22,X1=0。也就是说,消费者将全部的收入都购买商品2,并由此达到最大的效用水平,该效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一个商品组合所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。 第三种情况:当1212时, P12时,如图,无差异曲线与预算线重叠,效用最大化达到均衡点可以是预算线上的任何一点的商品组合,即最优解为X1≥0,X2≥0,且满足P1X12X2。此时所达到的最大效用水平在图中以实线表示的无差异曲线标出。显然,该效用水平高于在既定的预算线上其他任何一条无差异曲线所能达到的效用水平,例如那些用虚线表示的无差异曲线的效用水平。 8、假定某消费者的效用函数为,其中,q为某商品的消费量,M为收入。求: (1)该消费者的需求函数; (2)该消费者的反需求函数; (3)当,4时的消费者剩余。 解:(1)由题意可得,商品的边际效用为: 货币的边际效用为: 于是,根据消费者均衡条件,有: 整理得需求函数为 (2) 由需求函数,可得反需求函数为: (3)由反需求函数,可得消费者剩余为: 以1/124代入上式,则有消费者剩余:1/3 9设某消费者的效用函数为柯布-道格拉斯类型的,即,商品x和商品y的价格格分别为和,消费者的收入为M,和为常数,且 (1)求该消费者关于商品x和品y的需求函数。 (2)证明当商品x和 y的价格以及消费者的收入同时变动一个比例时,消费者对两种商品的需求关系维持不变。 (3)证明消费者效用函数中的参数和分别为商品x和商品y的消费支出占消费者收入的份额。 解答:(1)由消费者的效用函数,算得: 消费者的预算约束方程为 (1) 根据消费者效用最大化的均衡条件 (2) 得 (3) 解方程组(3),可得 (4) (5) 式(4)即为消费者关于商品x和商品y的需求函数。 上述休需求函数的图形如图 (2)商品x和商品y的价格以及消费者的收入同时变动一个比例,相当于消费者的预算线变为 (6) 其中为一个非零常数。 此时消费者效用最大化的均衡条件变为 (7) 由于,故方程组(7)化为 (8) 显然,方程组(8)就是方程组(3),故其解就是式(4)和式(5)。这表明,消费者在这种情况下对两商品的需求关系维持不变。 (3)由消费者的需求函数(4)和(5),可得 (9) (10) 关系(9)的右边正是商品x的消费支出占消费者收入的份额。关系(10)的右边正是商品y的消费支出占消费者收入的份额。故结论被证实。 10基数效用者是求如何推导需求曲线的? (1)基数效用论者认为,商品得需求价格取决于商品得边际效用.某一单位得某种商品的边际效用越小,消费者愿意支付的价格就越低.由于边际效用递减规律,随着消费量的增加,消费者为购买这种商品所愿意支付得最高价格即需求价格就会越来越低.将每一消费量及其相对价格在图上绘出来,就得到了消费曲线.且因为商品需求量与商品价格成反方向变动,消费曲线是右下方倾斜的. (2)在只考虑一种商品的前提下,消费者实现效用最大化的均衡条件: 。由此均衡条件出发,可以计算出需求价格,并推导与理解(1)中的消费者的向右下方倾斜的需求曲线。 11用图说明序数效用论者对消费者均衡条件的分析,以及在此基础上对需求曲线的推导。 解:消费者均衡条件:可达到的最高无差异曲线和预算线相切,即1212 需求曲线推导:从图上看出,在每一个均衡点上,都存在着价格与需求量之间一一对应关系,分别绘在图上,就是需求曲线X1 (P1) 12用图分析正常物品、低档物品和吉芬物品的替代效应和收入效应,并进一步说明这三类物品的需求曲线的特征。 解:要点如下: (1)当一种商品的价格发生变化时所引起的该商品需求量的变化可以分解为两个部分,它们分别是替代效应和收入效应。替代效应是指仅考虑商品相对价格变化所导致的该商品需求量的变化,而不考虑实际收入水平(即效用水平)变化对需求量的影响。收入效用则相反,它仅考虑实际收入水平(即效用水平)变化导致的该商品需求量的变化,而不考虑相对价格变化对需求量的影响。 (2)无论是分析正常品,还是抵挡品,甚至吉分品的替代效应和收入效应,需要运用的一个重要分析工具就是补偿预算线。在图1-15中,以正常品的情况为例加以说明。图中,初始的消费者效用最的化的均衡点为a点,相应的正常品(即商品1)的需求为X11。价格P1下降以后的效用最大化的均衡点为b点,相应的需求量为X12。即P1下降的总效应为X11X12,且为增加量,故有总效应与价格成反方向变化。 然后,作一条平行于预算线`且与原有的无差异曲线 相切的补偿预算线(以虚线表示),相应的效用最大化的均衡点为c点,而且注意,此时b点的位置一定处于c点的右边。于是,根据(1)中的阐诉,则可以得到:由给定的代表原有效用水平的无差异曲线U1与代表P1变化前.后的不同相对价格的(即斜率不同)预算线AB.FC分别相切的a、c两点,表示的是替代效应,即替代效应为X11X13且为增加量,故有替代效应与价格成反方向的变化;由代表不同的效用水平的无差异曲线U1和U2分别与两条代表相同价格的(即斜率相同的)预算线。`相切的c、b两点,表示的是收入效应,即收入效应为X13X12且为增加量,故有收入效应与价格成反方向的变化。 最后,由于正常品的替代效应和收入效应都分别与价格成反方向变化,所以,正常品的总效应与价格一定成反方向变化,由此可知,正常品的需求曲线向右下方倾斜的。 (3)关于劣等品和吉分品。在此略去关于这两类商品的具体的图示分析。需要指出的要点是:这两类商品的替代效应都与价格成反方向变化,而收入效应都与价格成同一方向变化,其中,大多数的劣等品的替代效应大于收入效应,而劣等品中的特殊商品吉分品的收入效应大于替代效应。于是,大多数劣等品的总效应与价格成反方向的变化,相应的需求曲线向右下方倾斜,劣等品中少数的特殊商品即吉分品的总效应与价格成同方向的变化,相应的需求曲线向右上方倾斜。 (4)基于(3)的分析,所以,在读者自己利用与图1-15相类似的图形来分析劣等品和吉分品的替代效应和收入效应时,在一般的劣等品的情况下,一定要使b点落在a、c两点之间,而在吉分品的情况下,则一定要使b点落在a点的左边。唯由此图,才能符合(3)中理论分析的要求。 《微观经济学》(高鸿业第四版) 第四章练习题参考答案 1.(1)利用短期生产的总产量()、平均产量()和边际产量()之间的关系,可以完成对该表的填空,其结果如下表: 可变要素的数量 可变要素的总产量 可变要素平均产量 可变要素的边际产量 1 2 2 2 2 12 6 10 3 24 8 12 4 48 12 24 5 60 12 12 6 66 11 6 7 70 10 4 8 70 35/4 0 9 63 7 -7 (2)所谓边际报酬递减是指短期生产中一种可变要素的边际产量在达到最高点以后开始逐步下降的这样一种普遍的生产现象。本题的生产函数表现出边际报酬递减的现象,具体地说,由表可见,当可变要素的投入量由第4单位增加到第5单位时,该要素的边际产量由原来的24下降为12。 2.(1).过曲线任何一点的切线的斜率就是相应的的值。 (2)连接曲线上热和一点和坐标原点的线段的斜率,就是相应的的值。 (3)当>时,曲线是上升的。 当<时,曲线是下降的。 当时,曲线达到极大值。 3.解答: (1)由生产数20.5L2-0.5K2,且10,可得短期生产函数为: 200.5L2-0.5*102 =200.5L2-50 于是,根据总产量、平均产量和边际产量的定义,有以下函数: 劳动的总产量函数200.5L2-50 劳动的平均产量函数20-0.550 劳动的边际产量函数20 (2)关于总产量的最大值:200解得20 所以,劳动投入量为20时,总产量达到极大值。 关于平均产量的最大值:-0.5+502=0 10(负值舍去) 所以,劳动投入量为10时,平均产量达到极大值。 关于边际产量的最大值: 由劳动的边际产量函数20可知,边际产量曲线是一条斜率为负的直线。考虑到劳动投入量总是非负的,所以,0时,劳动的边际产量达到极大值。 (3)当劳动的平均产量达到最大值时,一定有。由(2)可知,当劳动为10时,劳动的平均产量达最大值,及相应的最大值为: 的最大值=10 20-10=10 很显然10 4.解答:(1)生产函数表示该函数是一个固定投入比例的生产函数,所以,厂商进行生产时,23K.相应的有1812 (2)由23K,且480,可得:240160 又因为25,所以2*240+5*160=1280即最小成本。 5、(1)思路:先求出劳动的边际产量与要素的边际产量 根据最优要素组合的均衡条件,整理即可得。 (a) (2)L (b) (c) (2)L (d) 3L (2)思路:把111000,代人扩展线方程与生产函数即可求出 (a) (b) 2000 2000 (c) (d) 1000/3 1000 6.(1). 所以,此生产函数属于规模报酬不变的生产函数。 (2)假定在短期生产中,资本投入量不变,以表示;而劳动 投入量可变,以L表示。 对于生产函数,有: ,且 这表明:在短期资本投入量不变的前提下,随着一种可变要素劳动投入量的增加,劳动的边际产量是递减的。 相类似的,在短期劳动投入量不变的前提下,随着一种可变要素资本投入量的增加,资本的边际产量是递减的。 7、(1)当α0=0时,该生产函数表现为规模保持不变的特征 (2)基本思路:在规模保持不变,即α0=0,生产函数可以把α0省去。求出相应的边际产量再对相应的边际产量求导,一阶导数为负。即可证明边际产量都是递减的。 8. (1).由题意可知,2, 9. 为了实现最大产量:2. 当3000时,得1000. 1000. (2).同理可得。8002/3K1/3.22 800 2400 9利用图说明厂商在既定成本条件下是如何实现最大产量的最优要素组合的。 解答:以下图为例,要点如下: 分析三条等产量线,Q1、Q2、Q3与等成本线之间的关系.等产量线Q3虽然高于等产量线Q2。但惟一的等成本线与等产量线Q3既无交点又无切点。这表明等产量曲线Q3所代表的产量是企业在既定成本下无法实现的产量。再看Q1虽然它与惟一的等成本线相交与a、b两点,但等产量曲线Q1所代表的产量是比较低的。所以只需由a点出发向右或由b点出发向左沿着既定的等成本线 改变要素组合,就可以增加产量。因此只有在惟一的等成本线和等产量曲线Q2的相切点E,才是实现既定成本下的最大产量的要素组合。 10、利用图说明厂商在既定产量条件下是如何实现最小成本的最优要素组合的。 解答:如图所示,要点如下: (1)由于本题的约束条件是既定的产量,所以,在图中,只有一条等产量曲线;此外,有三条等成本线以供分析,并从中找出相应的最小成本。 (2)在约束条件即等产量曲线给定的条件下, A”B”虽然代表的成本较低,但它与既定的产量曲线Q既无交点又无切点,它无法实现等产量曲线Q所代表的产量,等成本曲线虽然与既定的产量曲线Q相交与a、b两点,但它代表的成本过高,通过沿着等产量曲线Q由a点向E点或由b点向E点移动,都可以获得相同的产量而使成本下降。所以只有在切点 E,才是在既定产量条件下实现最小成本的要素组合。由此可得,厂商实现既定产量条件下成本最小化的均衡条件是。 第五章练习题参考答案 1。 下面表是一张关于短期生产函数的产量表: (1) 在表1中填空 (2) 根据(1)。在一张坐标图上作出曲线,在另一张坐标图上作出曲线和曲线。 (3) 根据(1),并假定劳动
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服