收藏 分销(赏)

2023版大一轮数学人教A版-第2节-两直线的位置关系.docx

上传人:天**** 文档编号:9578329 上传时间:2025-03-31 格式:DOCX 页数:20 大小:194.74KB 下载积分:10 金币
下载 相关 举报
2023版大一轮数学人教A版-第2节-两直线的位置关系.docx_第1页
第1页 / 共20页
2023版大一轮数学人教A版-第2节-两直线的位置关系.docx_第2页
第2页 / 共20页


点击查看更多>>
资源描述
第2节 两直线的位置关系 知识梳理 1.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行. (2)两条直线垂直 如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.直线的交点与直线的方程组成的方程组的解的关系 (1)两直线的交点 点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组的解,解这个方程组就可以得到这两条直线的交点坐标. (2)两直线的位置关系 方程组的解 一组 无数组 无解 直线l1与l2的公共点的个数 一个 无数个 零个 直线l1与l2的位置关系 相交 重合 平行 3.距离公式 (1)两点间的距离公式 平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=. 特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=. (2)点到直线的距离公式 平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=. (3)两条平行线间的距离公式 一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=. 4.对称问题 (1)点P(x0,y0)关于点A(a,b)的对称点为P′(2a-x0,2b-y0). (2)设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有可求出x′,y′. 1.两直线平行的充要条件 直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行的充要条件是A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0). 2.两直线垂直的充要条件 直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0. 3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式. (2)求两平行线之间的距离时,应先将方程化为一般式且x,y的系数对应相等. 诊断自测 1.判断下列结论正误(在括号内打“√”或“×”) (1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.(  ) (2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.(  ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.(  ) (4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(  ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l1,l2有可能重合. (2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在. 2.两条平行直线3x+4y-12=0与ax+8y+11=0之间的距离为(  )                    A. B. C.7 D. 答案 D 解析 由题意知a=6,直线3x+4y-12=0可化为6x+8y-24=0,所以两平行直线之间的距离为=. 3.若三条直线y=2x,x+y=3,mx+2y+5=0相交于同一点,则m的值为________. 答案 -9 解析 由得 ∴点(1,2)满足方程mx+2y+5=0, 即m×1+2×2+5=0,∴m=-9. 4.(2021·武汉联考)若直线ax+4y-2=0与直线2x-5y+b=0垂直,垂足为(1,c),则a+b+c=(  ) A.-2 B.-4 C.-6 D.-8 答案 B 解析 ∵直线ax+4y-2=0与直线2x-5y+b=0垂直,∴-×=-1, ∴a=10,∴直线ax+4y-2=0的方程即为5x+2y-1=0. 将点(1,c)的坐标代入上式可得5+2c-1=0, 解得c=-2. 将点(1,-2)的坐标代入方程2x-5y+b=0得2-5×(-2)+b=0,解得b= -12. ∴a+b+c=10-12-2=-4.故选B. 5.(2020·淮南二模)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的(  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案 A 解析 当λ=-3时,两条直线的方程分别为6x+4y+1=0,3x+2y-2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的充分不必要条件,故选A. 6.(2019·江苏卷)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是________. 答案 4 解析 法一 由题意可设P(x0>0), 则点P到直线x+y=0的距离d==≥=4,当且仅当2x0=,即x0=时取等号. 故所求最小值是4. 法二 设P(x0>0),则曲线在点P处的切线的斜率为k=1-.令1-=-1,结合x0>0得x0=,∴P(,3),曲线y=x+(x>0)上的点P到直线x+y=0的最短距离即为此时点P到直线x+y=0的距离,故dmin==4. 考点一 两直线的平行与垂直                     【例1】已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0. (1)试判断l1与l2是否平行; (2)当l1⊥l2时,求a的值. 解 (1)法一 当a=1时,l1:x+2y+6=0,l2:x=0,l1不平行于l2; 当a=0时,l1:y=-3,l2:x-y-1=0,l1不平行于l2; 当a≠1且a≠0时,两直线方程可化为l1:y=-x-3, l2:y=x-(a+1), l1∥l2⇔ 解得a=-1,综上可知,当a=-1时,l1∥l2. 法二 由A1B2-A2B1=0,得a(a-1)-1×2=0, 由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2⇔⇔可得a=-1, 故当a=-1时,l1∥l2. (2)法一 当a=1时,l1:x+2y+6=0,l2:x=0, l1与l2不垂直,故a=1不成立; 当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立; 当a≠1且a≠0时, l1:y=-x-3,l2:y=x-(a+1), 由·=-1,得a=. 法二 由A1A2+B1B2=0,得a+2(a-1)=0,可得a=. 感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件. 2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线l的方程是(  ) A.6x-4y-3=0 B.3x-2y-3=0 C.2x+3y-2=0 D.2x+3y-1=0 (2)(多选题)(2021·重庆调研)已知直线l1:x+my-1=0,l2:(m-2)x+3y+3=0,则下列说法正确的是(  ) A.若l1∥l2,则m=-1或m=3 B.若l1∥l2,则m=3 C.若l1⊥l2,则m=- D.若l1⊥l2,则m= 答案 (1)A (2)BD 解析 (1)因为抛物线y2=2x的焦点坐标为,直线3x-2y+5=0的斜率为,所以所求直线l的方程为y=,化为一般式,得6x-4y-3=0. (2)若直线l1∥l2,则3-m(m-2)=0,解得m=3或m=-1,但m=-1时,两直线方程分别为x-y-1=0,-3x+3y+3=0即x-y-1=0,两直线重合,只有m=3时两直线平行,A错误,B正确; 若l1⊥l2,则m-2+3m=0,m=,C错误,D正确. 考点二 两直线的交点与距离问题 【例2】 (1)(2021·淮南模拟)已知直线kx-y+2k+1=0与直线2x+y-2=0的交点在第一象限,则实数k的取值范围为(  ) A. B.∪(-1,+∞) C.∪ D. (2)(2021·广州模拟)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是________. 答案 (1)D (2)[0,10] 解析 (1)联立解得x=,y=(k≠-2). ∵直线kx-y+2k+1=0与直线2x+y-2=0的交点在第一象限, ∴>0,且>0. 解得-<k<.故选D. (2)由题意得,点P到直线的距离为=. 又≤3,即|15-3a|≤15,解之得0≤a≤10, 所以a的取值范围是[0,10]. 感悟升华 1.求过两直线交点的直线方程的方法 求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程. 2.利用距离公式应注意:(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;(2)应用两平行线间的距离公式要把两直线方程中x,y的系数分别化为对应相等. 【训练2】 (1)(多选题)(2020·济宁调研)已知直线l1:2x+3y-1=0和l2:4x+6y-9=0,若直线l到直线l1的距离与到直线l2的距离之比为1∶2,则直线l的方程为(  ) A.2x+3y-8=0 B.4x+6y+5=0 C.6x+9y-10=0 D.12x+18y-13=0 (2)求经过直线l1:3x+2y-1=0和l2:5x+2y+1=0的交点,且垂直于直线l3:3x-5y+6=0的直线l的方程为________________. 答案 (1)BD (2)5x+3y-1=0 解析 (1)设直线l:4x+6y+m=0,m≠-2且m≠-9,直线l到直线l1和l2的距离分别为d1,d2,由题知:d1=,d2=,因为=,所以=,即2|m+2|=|m+9|,解得m=5或m=-,即直线l为4x+6y+5=0或12x+18y-13=0. (2)先解方程组 得l1,l2的交点坐标为(-1,2), 再由l3的斜率求出l的斜率为-, 于是由直线的点斜式方程求出l: y-2=-(x+1),即5x+3y-1=0. 考点三 对称问题 角度1 点关于点对称 【例3】过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为________. 答案 x+4y-4=0 解析 设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x+4y-4=0. 感悟升华 1.点关于点的对称:点P(x,y)关于M(a,b)对称的点P′(x′,y′)满足 2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解. 角度2 点关于线对称 【例4】一束光线经过点P(2,3)射在直线l:x+y+1=0上,反射后经过点Q(1,1),则入射光线所在直线的方程为________. 答案 5x-4y+2=0 解析 设点Q(1,1)关于直线l的对称点为Q′(x′,y′),由已知得解得 即Q′(-2,-2),由光学知识可知,点Q′在入射光线所在的直线上,又kPQ′==, ∴入射光线所在直线的方程为y-3=(x-2),即5x-4y+2=0. 感悟升华 1.若点A(a,b)与点B(m,n)关于直线Ax+By+C=0(A≠0,B≠0)对称,则直线Ax+By+C=0垂直平分线段AB,即有 2.几个常用结论 (1)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y). (2)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x). (3)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y). 角度3 线关于线对称 【例5】 (1)(2021·成都诊断)与直线3x-4y+5=0关于x轴对称的直线的方程是(  ) A.3x-4y+5=0 B.3x-4y-5=0 C.3x+4y-5=0 D.3x+4y+5=0 (2)直线2x-y+3=0关于直线x-y+2=0对称的直线方程是________________. 答案 (1)D (2)x-2y+3=0 解析 (1)设所求直线上点的坐标(x,y),则关于x轴的对称点(x,-y)在已知的直线3x-4y+5=0上,所以所求对称直线方程为3x+4y+5=0,故选D. (2)设所求直线上任意一点P(x,y), 则P关于x-y+2=0的对称点为P′(x0,y0), 由得 由点P′(x0,y0)在直线2x-y+3=0上, ∴2(y-2)-(x+2)+3=0,即x-2y+3=0. 感悟升华 求直线l1关于直线l对称的直线l2有两种处理方法: (1)在直线l1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l的对称点,再用两点式写出直线l2的方程. (2)设点P(x,y)是直线l2上任意一点,其关于直线l的对称点为P1(x1,y1)(P1在直线l1上),根据点关于直线对称建立方程组,用x,y表示出x1,y1,再代入直线l1的方程,即得直线l2的方程. 【训练3】已知直线l:2x-3y+1=0,点A(-1,-2).求: (1)点A关于直线l的对称点A′的坐标; (2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程; (3)直线l关于点A对称的直线l′的方程. 解 (1)设A′(x,y),则 解得即A′. (2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m′上.设对称点为M′(a,b), 则 解得即M′. 设m与l的交点为N,则由 得N(4,3).又m′经过点N(4,3), ∴由两点式得直线m′的方程为9x-46y+102=0. (3)法一 在l:2x-3y+1=0上任取两点, 如P(1,1),N(4,3), 则P,N关于点A的对称点P′,N′均在直线l′上. 易知P′(-3,-5),N′(-6,-7),由两点式可得l′的方程为2x-3y-9=0. 法二 设Q(x,y)为l′上任意一点,则Q(x,y)关于点A(-1,-2)的对称点为 Q′(-2-x,-4-y), ∵Q′在直线l上,∴2(-2-x)-3(-4-y)+1=0, 即2x-3y-9=0. 活用直线系方程 具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用. 一、相交直线系方程                     【例1】已知两条直线l1:x-2y+4=0和l2:x+y-2=0的交点为P,求过点P且与直线l3:3x-4y+5=0垂直的直线l的方程. 解 法一 解l1与l2组成的方程组得到交点P(0,2),因为k3=,所以直线l的斜率k=-,方程为y-2=-x,即4x+3y-6=0. 法二 设所求直线l的方程为4x+3y+c=0,由法一可知P(0,2),将其代入方程,得c=-6,所以直线l的方程为4x+3y-6=0. 法三 设所求直线l的方程为x-2y+4+λ(x+y-2)=0,即(1+λ)x+(λ-2)y+4-2λ=0,因为直线l与l3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l的方程为4x+3y-6=0. 二、平行直线系方程 【例2】已知直线l1与直线l2:x-3y+6=0平行,l1与x轴、y轴围成面积为8的三角形,请求出直线l1的方程. 解 设直线l1的方程为x-3y+c=0(c≠6),令y=0,得x=-c;令x=0,得y=,依照题意有×|-c|×=8,c=±4.所以l1的方程是x-3y±4=0. 【例3】已知直线方程3x-4y+7=0,求与之平行且在x轴、y轴上的截距和是1的直线l的方程. 解 法一 设存在直线l:+=1,则a+b=1和-=组成的方程组的解为a=4,b=-3. 故l的方程为-=1,即3x-4y-12=0. 法二 根据平行直线系方程可设直线l为3x-4y+c=0(c≠7),则直线l在两坐标轴上截距分别对应的是-,,由-+=1,知c=-12.故直线l的方程为3x-4y-12=0. 三、垂直直线系方程 【例4】求经过A(2,1),且与直线2x+y-10=0垂直的直线l的方程. 解 因为所求直线与直线2x+y-10=0垂直,所以设直线方程为x-2y+c=0,又直线过点A(2,1), 所以有2-2×1+c=0,解得c=0, 即所求直线方程为x-2y=0. 思维升华 直线系方程的常见类型 1.过定点P(x0,y0)的直线系方程是y-y0=k(x-x0)(k是参数,直线系中未包括直线x=x0); 2.平行于已知直线Ax+By+C=0的直线系方程是Ax+By+λ=0(λ是参数且λ≠C); 3.垂直于已知直线Ax+By+C=0的直线系方程是Bx-Ay+λ=0(λ是参数); 4.过两条已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的交点的直线系方程是A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R,但不包括l2). A级 基础巩固 一、选择题                     1.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a=(  ) A. B.2- C.-1 D.+1 答案 C 解析 由题意得=1. 解得a=-1+或a=-1-. ∵a>0,∴a=-1+. 2.已知直线l过点(0,7),且与直线y=-4x+2平行,则直线l的方程为(  ) A.y=-4x-7 B.y=4x-7 C.y=4x+7 D.y=-4x+7 答案 D 解析 过点(0,7)且与直线y=-4x+2平行的直线方程为y-7=-4x,即直线l的方程为y=-4x+7,故选D. 3.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0垂直,则ab的最小值为(  ) A.1 B.2 C.2 D.2 答案 B 解析 由已知两直线垂直可得(b2+1)-ab2=0,即ab2=b2+1,又b>0,所以ab=b+. 由基本不等式得b+≥2=2,当且仅当b=1时等号成立,所以(ab)min=2.故选B. 4.坐标原点(0,0)关于直线x-2y+2=0对称的点的坐标是(  ) A. B. C. D. 答案 A 解析 设对称点的坐标为(x0,y0), 则解得 即所求点的坐标是. 5.(2020·豫西五校联考)过点P(1,2)作直线l,若点A(2,3),B(4,-5)到它的距离相等,则直线l的方程为(  ) A.4x+y-6=0或x=1 B.3x+2y-7=0 C.4x+y-6=0或3x+2y-7=0 D.3x+2y-7=0或x=1 答案 C 解析 若A,B位于直线l的同侧,则直线l∥AB. kAB==-4,∴直线l的方程为y-2=-4(x-1),即4x+y-6=0;若A,B位于直线l的两侧,则直线l必经过线段AB的中点(3,-1),∴kl==-, ∴直线l的方程为y-2=-(x-1),即3x+2y-7=0. 综上,直线l的方程为4x+y-6=0或3x+2y-7=0,故选C. 6.(多选题)(2021·泰安调研)已知直线l:(a2+a+1)x-y+1=0,其中a∈R,则下列说法正确的是(  ) A.当a=-1时,直线l与直线x+y=0垂直 B.若直线l与直线x-y=0平行,则a=0 C.直线l过定点(0,1) D.当a=0时,直线l在两坐标轴上的截距相等 答案 AC 解析 对于A项,当a=-1时,直线l的方程为x-y+1=0,显然与x+y=0垂直,所以正确; 对于B项,若直线l与直线x-y=0平行,可知(a2+a+1)·(-1)=1·(-1),解得a=0或a=-1,所以不正确; 对于C项,当x=0时,有y=1,所以直线过定点(0,1),所以正确; 对于D项,当a=0时,直线l的方程为x-y+1=0,在两轴上的截距分别是-1,1,所以不正确. 7.(2021·宝鸡模拟)光线沿着直线y=-3x+b射到直线x+y=0上,经反射后沿着直线y=ax+2射出,则有(  ) A.a=,b=6 B.a=-3,b= C.a=3,b=- D.a=-,b=-6 答案 D 解析 由题意,直线y=-3x+b与直线y=ax+2关于直线y=-x对称, 所以直线y=ax+2上的点(0,2)关于直线y=-x的对称点(-2,0)在直线y= -3x+b上, 所以(-3)×(-2)+b=0,所以b=-6, 所以直线y=-3x-6上的点(0,-6)关于直线y=-x的对称点(6,0)在直线y=ax+2上,所以6a+2=0, 所以a=-. 8.(多选题)(2021·长沙模拟)已知直线l:x-y+1=0,则下列结论正确的是(  ) A.直线l的倾斜角是 B.若直线m:x-y+1=0,则l⊥m C.点(,0)到直线l的距离是2 D.过(2,2)与直线l平行的直线方程是x-y-4=0 答案 CD 解析 对于A,直线l:x-y+1=0的斜率k=tan θ=,故直线l的倾斜角是,故A错误; 对于B,因为直线m:x-y+1=0的斜率k′=,kk′=1≠-1,故直线l与直线m不垂直,故B错误; 对于C,点(,0)到直线l的距离d==2,故C正确; 对于D,过(2,2)与直线l平行的直线方程是y-2=(x-2),整理得: x-y-4=0,故D正确. 二、填空题 9.(2020·南昌重点中学联考)已知直线l1:y=2x,则过圆x2+y2+2x-4y+1=0的圆心且与直线l1垂直的直线l2的方程为________. 答案 x+2y-3=0 解析 由题意可知圆的标准方程为(x+1)2+(y-2)2=4,所以圆的圆心坐标为 (-1,2),由已知得直线l2的斜率k=-,所以直线l2的方程为y-2=-(x+1),即x+2y-3=0. 10.直线x-2y-3=0关于定点M(-2,1)对称的直线方程是________. 答案 x-2y+11=0 解析 设所求直线上任一点(x,y),则关于M(-2,1)的对称点(-4-x,2-y)在已知直线上,∴所求直线方程为(-4-x)-2(2-y)-3=0,即x-2y+11=0. 11.若P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则PQ的最小值为________. 答案  解析 因为=≠,所以两直线平行, 将直线3x+4y-12=0化为6x+8y-24=0, 由题意可知|PQ|的最小值为这两条平行直线间的距离, 即=,所以|PQ|的最小值为. 12.以点A(4,1),B(1,5),C(-3,2),D(0,-2)为顶点的四边形ABCD的面积为________. 答案 25 解析 因为kAB==-,kDC==-. kAD==,kBC==. 则kAB=kDC,kAD=kBC,所以四边形ABCD为平行四边形. 又kAD·kAB=-1,即AD⊥AB,故四边形ABCD为矩形. 故S四边形ABCD=|AB|·|AD|=×=25. B级 能力提升 13.设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线的方程分别是x=0,y=x,则直线BC的方程是(  ) A.y=3x+5 B.y=2x+3 C.y=2x+5 D.y=-+ 答案 C 解析 A关于直线x=0的对称点是A′(-3,-1),关于直线y=x的对称点是 A″(-1,3),由角平分线的性质可知,点A′,A″均在直线BC上,所以直线BC的方程为y=2x+5.故选C. 14.(多选题)(2021·南京调研)已知直线l1:ax-y+1=0,l2:x+ay+1=0,a∈R,以下结论正确的是(  ) A.不论a为何值,l1与l2都互相垂直 B.当a变化时,l1与l2分别经过定点A(0,1)和B(-1,0) C.不论a为何值,l1与l2都关于直线x+y=0对称 D.如果l1与l2交于点M,则|MO|的最大值是 答案 ABD 解析 对于A,a×1+(-1)×a=0恒成立,l1与l2都互相垂直恒成立,故A正确; 对于B,直线l1:ax-y+1=0,当a变化时,x=0,y=1恒成立,所以l1恒过定点A(0,1);l2:x+ay+1=0,当a变化时,x=-1,y=0恒成立,所以l2恒过定点B(-1,0),故B正确; 对于C,在l1上任取点(x,ax+1),关于直线x+y=0对称的点的坐标为(-ax-1,-x),代入l2:x+ay+1=0,则等式左边不恒等于0,故C不正确; 对于D,联立解得 即M, 所以|MO|==≤,所以|MO|的最大值是,故D正确. 15.已知直线l经过直线2x+y-5=0与x-2y=0的交点,若点A(5,0)到直线l的距离为3,则l的方程为________. 答案 x=2或4x-3y-5=0 解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x-2=0,此时A到直线l的距离为3,符合题意; 当斜率存在时,设其为k,则所求直线方程为y-1=k(x-2),即kx-y+(1-2k)=0. 由点到线的距离公式得d==3,解得k=,故所求直线方程为4x-3y-5=0. 综上知,所求直线方程为x-2=0或4x-3y-5=0. 法二 经过两已知直线交点的直线系方程为(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0, 所以=3,解得λ=2或λ=. 所以l的方程为x=2或4x-3y-5=0. 16.已知点A(4,-1),B(8,2)和直线l:x-y-1=0,动点P(x,y)在直线l上,则|PA|+|PB|的最小值为________. 答案  解析 设点A1与A关于直线l对称,P0为A1B与直线l的交点,∴|P0A1|=|P0A|,|PA1|=|PA|. 在△A1PB中,|PA1|+|PB|>|A1B|=|A1P0|+|P0B|=|P0A|+|P0B|, ∴|PA|+|PB|≥|P0A|+|P0B|=|A1B|. 当P点运动到P0时,|PA|+|PB|取得最小值|A1B|. 设点A关于直线l的对称点为A(x1,y1),则由对称的充要条件知解得∴A1(0,3). ∴(|PA|+|PB|)min=|A1B|==.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服