收藏 分销(赏)

绪论流动气体基本知识方程市公开课一等奖百校联赛特等奖课件.pptx

上传人:天**** 文档编号:9515907 上传时间:2025-03-29 格式:PPTX 页数:30 大小:602.72KB
下载 相关 举报
绪论流动气体基本知识方程市公开课一等奖百校联赛特等奖课件.pptx_第1页
第1页 / 共30页
绪论流动气体基本知识方程市公开课一等奖百校联赛特等奖课件.pptx_第2页
第2页 / 共30页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第1页,绪论 流动气体基本知识 方程,介绍气体动力学基本内容,和流动气体基本知识,流动气体基本知识和连续方程,连续方程应用,2/22,第2页,11 气体连续介质模型,一、流体质点与连续介质模型,处于流体状态物质,不论是液体还是气体,都是由大量不停运动着分子所组成。从微观角度来看,流体物理量在空间是不连续,这是因为分子之间总是存在间隙,而且分子内部质量分布也不连续。同时,因为分子随机运动,又造成任一空间点上流体物理量对于时间不连续性。,第3页,不过在气体运动力学中,我们所讨论问题特征尺寸往往大于气体分子平均自由程(指1个分子在连续两次碰撞之间所经过平均旅程),而人们感兴趣是气体宏观特征。即大量分子统计平均特征。这么,我们有理由不以分子作为研究对象,而是引进流体连续介质模型,并以连续介质作为我们研究对象。为了建立连续介质模型概念,让我们首先观察一个很有启发性试验结果。,第4页,如图,211a,所表示,取包含,点微元,。在此体积中流体质量为,。体积,中 流体平均密度为,。我们绕P点取大小不一样,,测出其中质量,,计算出其中平均密度,。实测结果如图,211,b,所表示。,第5页,在包含P点微元体积,向,逐步收缩过程中,其平均密度逐步趋于一个确定极限值,而且当体积,继续收缩时其平均密度不再改变。此时分子个性并未显示出来。只有当体积,收缩到比,更小时,此时,中分于数已降低到这么程度,随机进入和飞出此体积分子数不能随时平衡,所以体积,中分子数也将随机波动,从而引发体积,内流体平均密度随机波动,这时流体表现出分子个性,比值,不再含有明确必定数值,如图,211,b,中波动曲线所表示。,第6页,由此可见,,是一个特征体积,从宏观上看,它几何尺寸与研究工程问题中物体尺寸相比要小得多,但从微观上看,它又包含有足够多分子数目,从而使统计平均值 有确切意义。我们把微元体积,中全部流体分子总体称作流体质点。利用流体质点这个概念,能够得出流体连续介质模型定义:流体是由连续分布流体质点所组成。,第7页,流体既被看成是连续介质,则反应宏观流体各种物理量,就都是空间坐标连续函数。所以,在以后讨论中都能够引用连续函数解析方法,来研究气体处于平衡和运动状态下相关物理参数之间数量关系。不过当我们所研究问题特征尺寸靠近或小于质点特征尺寸时连续介质模型将不再适用。可见流体连续介质模型是一个含有相对意义概念。,第8页,二、气体物理量,依据连续介质模型,气体中每一点都被对应气体质点所占据。所谓空间任意点上气体物理量(如密度、速度、压强等)就是指位于该点上气体质点物理量。,(一)气体中一点处密度和速度,依据连续介质概念,密度数学定义为,(211),所以,,密度就是单位体积内所含质量,。,第9页,在任意时刻,空间任意点上气体质点密度都含有确定数值,所以密度是坐标点,及时间,t,函数。,令V表示一点处气体运动速度,是指给定瞬间经过该点气体质点瞬时速度,类似于密度,它也是连续函数,速度V是个矢量,它在空间坐标,方向上三个分量分别为,。,同理,也能够建立连续介质中一点处比容,v,,比重,r,和温度概念。,第10页,(二)气体中一点处压强,一个受力固体元件,在内部任意切出一个剖面,在这个剖面上,普通现有法向力又有切向力。一样,在流动着气体内部任意取出一个面积为,剖面来看,剖面上普通也有法向力,和切向力,,如图,212,所表示。这里切向力完全是由粘性产生,而气体粘性又只有在流动时才会表现出来。法向力总是有,不论气体是静止还是流动。,第11页,法向应力定义为,气体中法向应力,即垂直作用在单位表面面积上力称为压强,(或又叫压力)压强以压迫力(箭头指向气体中某点)为正,吸引力为负。,第12页,依据连续介质模型,它也是连续函数,切向应力定义是,气体中切向应力,叫做摩擦应力。在静止气体中,不存在粘性摩擦应力,。有些运动着气体粘性摩擦应力,,也很小,能够忽略不计,这种忽略粘性应力气体叫做理想气体,在理想气体中任一点压强大小与方位无关,即气体从任一方向压向该点压强在数值上是一样。,第13页,12 气体基本属性,在气体基本属性中,与气体流动相关韵是热力学属性(已在工程热力学中说明)和气体压缩性,粘性和导热性。,一、气体压缩性,气体密度伴随压力或温度改变而改变物理性质,叫做气体压缩性。,第14页,流动气体,因为速度改变,会引发压力或温度对应改变,从而使密度发生改变。气体密度改变又会影响气体流动。所以,这里所说气体可压缩性,不是指静止气体在外加压力作用下压缩性,而是指气体在流动过程中因为本身压力改变所引发密度改变。通常我们用却,这个量来衡量气体压缩性大小。显然,改变单位密度所需压力改变量越大,即却,,说明气体难压缩或压缩性小;反之,,小,说明气体易压缩或压缩性大。以后会证实,,等于音速平方,所以压缩性与音速 有直接关系。,第15页,压缩性对流动气体影响通惯用马赫数M表示,定义以下,其中,C,为局部气体速度,为局部音速。,计算表明,气体低速流动时,,因为气流速度改变而引发气体密度相对改变量很小,在此情况下,能够近似地假定气体密度是不变。当气体以高速流动时,就必须考虑压缩性影响了。,第16页,二、气体粘性,气体流动时,因为气体与固体壁面附着力和气体本身之间分子运动和内聚力,使气体各处速度产生差异。比如假设有一股平直均匀气流,以速度,流过平板,如图,213,所表示。测量子板表面附近各层气体流速,就会发觉:紧贴平板那层气体流速降低为零;沿平板法线,方向向外,气流速度逐步增大,直到离开平板一段距离,后,速度才和原来气流速度,。没有显著差异。速度沿平板法线方向这种改变,正是气体粘性表现。,第17页,运动较快流层能够带动较慢流层,反之运动较慢流层则又阻滞运动啊 较快流层,不一样速度流层之间相互制约,产生类似固体摩擦过程力。称为内摩擦力。,气体流动时产生内摩擦力这种性质叫做气体粘性,。,依据牛顿内摩擦定律,流体在运动时,内摩擦力,F,与流体速度沿法线方向改变率(速度梯度)成比,与接触面积A成正比,与流体性质(粘性)相关而与流体内压强无关,它数学表示式为:,第18页,内摩擦力,F,除以接触面积,A,,即得气体内切应力,这里,是表征气体粘性百分比系数,称为粘度或粘性系数。在国际单位制中,粘度单位是,。不一样流体介质,值各不相同,同一介质,值随温度而改变。这里尤其需要指 出是,粘度,是反应流体本身固有特征系数;而摩擦应力,则取决于粘度,和当地速度梯度,。我们所说理想流体,是指,和,都小因而,流体,不是指流体粘度,等于零。,第19页,现在我们分析气流各层之间摩擦力本质。由物理学知道,不论气体是处于静止状态还是处于运对状态,气体分子总是不停地进行着不规则热运动,这种热运动使不一样流层中气体质量进行交换,而假如各层气流速度不相等话,相邻两层中气体分于动量必定不相同,因而就有动量交换。单位时间时经过相邻两层分界面单位面积上动量交换便是摩擦应力,。假如流体不是一层一层地流动(称为层流)而是紊乱地流动(称为紊流),则相邻两层不但有分子运动带来动量交换,,第20页,而且又因为流体微团乱动带来动量交换,后者比前者大得多,所以紊流比层流摩擦阻力大得多。,在许多气体动力学问题里,粘性力与惯性力同时存在,往往把,和,写成组合参数,,并以符号表示 即,称为运动粘度。而与此相对应,把,称为动力粘度。,第21页,三、气体导热性,同固体传热类似,气体中温度不均匀地方,也会出现热传导现象。单位时间内经过垂直于,n,方向单位面积所传递热量,q,按傅立叶导热定律确定为,为气体导热系数,,为温度梯度。负,号表示热量传递方向永远气温度梯度方向相反。,式中,第22页,21 连续方程,连续方程是质量守恒定律应用于流动气体所得到关系式,。,质量守恒定律在一维定常管流中详细形式就是流过任何截面流量是相等,。,设有一维定常管流,如图,221,所表示。在流管中任取垂直于管轴截面11和22,设截面11管截面积是,,流速是,,密度是,;截面22管截面积是,,流速是,,密度是,。,第23页,因为是定常流动,各截面全部参数都不随时间改变,那么,每秒钟经过两截面质量分别是,和,而流过其它任一截面质量是,。按质量守恒定律可得等式,第24页,上式称为连续性方程。对于不可压流,=常数,上式写为,上式表明,在一维定常不可压流里,流管沿程各截面上流速是与横截面积成反百分比改变。凡横截面积小处,流速必大,反之亦然。,上面式子称为积分形式连续方程。为了便于应用连续方程分析、计算问题以及推导其它方程,下面对连续方程微分形式作一推导。,第25页,进行全微分得,两边同除以,得,对于低速不可压定常流有,上述两式称为微分形式连续方程。它说明在一维常流动中,管道横截面积、气体密度与气流速度相对改变量之和等于零。,第26页,图211 流体质点,第27页,图212 气体压强,第28页,图213 空气粘性表现,第29页,图221 连续方程推导,第30页,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服