收藏 分销(赏)

船舶舷侧结构的抗爆性能研究及优化设计.docx

上传人:可**** 文档编号:950515 上传时间:2024-04-08 格式:DOCX 页数:100 大小:3.72MB
下载 相关 举报
船舶舷侧结构的抗爆性能研究及优化设计.docx_第1页
第1页 / 共100页
船舶舷侧结构的抗爆性能研究及优化设计.docx_第2页
第2页 / 共100页
点击查看更多>>
资源描述
船舶舷侧结构的抗爆性能研究及优化设计 Dissertation Submitted to Shanghai Jiao Tong University for the Degree of Master Research and Optimization of Side Structure with Mechanical Properties of Blast-resistance 万方数据 万方数据 万方数据 船舶舷侧结构的抗爆性能研究及优化设计 摘 要 随着国防科技的快速发展,各种水面作战武器的打击力度及打击精 度都大幅提高,打击手段也不断丰富,在一线服役的舰船遭受武器攻击 和破坏的风险随之不断升高。为了能够对水下兵器的攻击做出有效的防 护,保证水面舰船在受到攻击后仍然保有生命力,各个国家都在积极地 开展水下爆炸载荷作用机理、结构在水下爆炸作用下的响应机理以及结 构抗冲击性能理论、优化设计等领域的理论及实验研究,并不断探索和 提出新型的抗冲击舷侧结构。 舰船舷侧结构在遭受水下爆炸载荷作用时,会在很短的时间内发生 非常复杂的非线性动态响应,是一个强非线性问题。想要通过数学模型 来得到此类复杂问题的解析解是非常困难的,同时,试验研究也受限于 其试验本身的不确定性和资金问题,无法大规模应用。在这样的背景之 下,本文采用数值仿真试验的方法,既解决了数学模型求解难的问题, 也不存在过多资金成本的问题,从爆炸载荷特性、不同形式的舷侧结构 对载荷的响应以及舷侧结构的优化设计几个方面入手对水下爆炸载荷下 的船舶结构响应以及优化设计进行了研究,并讨论了不同形式结构抗爆 性能的差异。 本文首先在研究了炸药爆轰理论的基础上,采用库尔半理论半经验 公式,模拟了冲击波载荷在舰船舷侧结构上的作用,为计算结构的响应 提供了理论基础。 在此基础上,本文通过显示非线性有限元求解技术,对结构简化模 型的动态响应过程进行了仿真模拟,计算结果给出了结构在冲击波载荷 下的加速度、速度、位移等结构响应以及各部分构件的吸能、比吸能水 I 平等结构性能。同时,本文还从结构抗冲击性能的角度给出了三种具有 抗冲击性能的舷侧结构设计,并针对每种设计对上述的动态响应进行了 分析和比较。 结构的动态响应与结构的设计参数息息相关,结构的板厚布置、结 构的形状设计都或许会很大程度地影响到结构的力学性能。为了探究结 构中各个参数对结构抗冲击性能的影响,文章引入了试验设计对设计输 入参数和结构响应输出的关系进行了研究。同时使用智能优化算法对结 构进行尺寸和形状两个层面上的优化,得到满足约束条件的结构最优解。 文章在优化过程中还引入了近似模型的概念,并以该模型来代替计算成 本较高的有限元数值计算过程,很大程度地降低了优化设计方法中多次 迭代造成的时间成本。 最后,文章给出了一个实际复杂问题的实例,对某舰船的三个舱段 进行详细建模,并引入参数化建模技术,采用 PYTHON 语言编写可执行 脚本,以便在优化过程中 ABAQUS 可以完成自动化建模过程。在优化模 型中,分别以舷侧结构的形式和板厚作为设计对象,按照预期性能设定 目标函数,进行单目标和多目标的优化,得到了可行的优化设计。 关键词:水下爆炸、舷侧结构、抗爆性能、优化设计 II Research and Optimization of Side Structure with Mechanical Properties of Blast-resistance ABSTRACT With the rapid development of defense-related science and technology, the strength and accuracy of a variety of surface warfare weapons are greatly improved, as well as the means to combat. Consequently, the risk constantly increases that a serving vessel suffers from underwater explosion. In order to make an effective protection against attack from underwater weapons, ensuring that the vessel can still maintain vitality after the attack, continuing to explore innovative structures, countries all over the world are actively engaged in researches of theory and experience on mechanism of underwater explosion and structural response under underwater explosion and theory of blast-resistance and optimization design. Side structure presents very complex and non-linear dynamic response in a quite short period of time, which is a strongly non-linear mechanical problem. It’s extremely hard to get analytical solutions through a mathematical model for this kind of problems. Meanwhile, the experiment study is also limited and cannot be widely used because of funding issues and the uncertainty of the experiment. In this context, this thesis uses numerical simulation method to explore the structural response and optimization under underwater explosion. The study mainly includes a few parts: the study of characteristics of explosive load, the study of dynamic responses of different side structure designs, the optimization of each design and the differences of blast-resistance between them. Firstly, this thesis gives a brief introduction of explosive detonation theory. According to the explosive detonation theory, this thesis simulates the explosion loads on side structures using semi-theoretical semi-empirical III formula proposed by Cole. This part provides a theoretical basis for the following computing of structure responses. On this basis, the thesis uses non-linear finite element solver to simulate the dynamic responses of a simplified model. The simulation result shows the dynamic responses, such as acceleration, velocity, displacement of the structure, and also the level of energy absorption and specific energy absorption. Besides, from the perspective of the blast-resistance of structure, this thesis proposes three structural designs. The dynamic responses mentioned above are analyzed and compared for each design. The dynamic response is closely related to the design parameters. Either the thickness arrangement of shell elements or the shape of the structure is of great influence to the mechanical properties. DOE (design of experiment) is introduced to explore the relationship among the variables. Intelligent optimization algorithms are used to optimize the size and shape to get the optimal solution which satisfies the constraints. Also, the concept of approximate model is introduced in the optimization process, which is used to replace the finite element analysis with little computational cost. In the end, this thesis presents a practical example which is more complex. A detailed three cabin model of vessel is established automatically in ABAQUS by using PYTHON and parametric modeling techniques. Then take the thickness and shape of side structure as design parameter. Run multi-objective and single-objective optimization for thickness and shape optimization respectively. Finally, the optimal solution is obtained. KEY WORDS: underwater explosions, side structure, blast resistance, optimization IV 目 录 第一章 绪论 ································ ································ ························ 1 1.1 研究背景和研究目标································ ································ ······ 1 1.2 国内外研究现状································ ································ ············ 3 1.2.1 水下爆炸载荷研究现状 ································ ····························· 3 1.2.2 水下爆炸载荷作用下的舰船结构动响应研究现状····························· 4 1.2.3 舰船抗冲击结构优化设计研究现状································ ··············· 5 1.3 船舶优化设计需要解决的两个问题 ································ ···················· 6 1.3.1 计算成本较高 ································ ································ ········· 6 1.3.2 参数化建模较困难 ································ ································ ··· 6 1.4 本文的主要研究内容································ ································ ······ 7 第二章 水下爆炸载荷及计算方法研究································ ························ 9 2.1 引言································ ································ ··························· 9 2.2 冲击波及炸药爆轰基本理论 ································ ···························· 10 2.2.1 冲击波理论 ································ ································ ··········· 10 2.2.2 爆轰波的 CJ 理论 ································ ································ ···· 12 2.3 水下爆炸载荷的半理论半经验计算方法 ································ ············· 14 2.3.1 冲击波作用阶段 ································ ································ ····· 15 2.3.2 气泡脉动阶段 ································ ································ ········ 17 2.4 本章小结································ ································ ···················· 19 第三章 船舶舷侧结构抗爆性能研究 ································ ························· 20 3.1 传统双壳舷侧结构水下爆炸载荷下的响应 ································ ·········· 20 3.1.1 有限元模型概述 ································ ································ ····· 21 3.1.2 模型响应 ································ ································ ·············· 23 3.2 具有抗冲击性能的舰船舷侧结构设计 ································ ················ 36 3.2.1 水平分叉型结构 ································ ································ ····· 37 3.2.2 Y 型结构 ································ ································ ··············· 40 3.2.3 半圆型结构 ································ ································ ··········· 44 V 3.2.4 布置几种不同形式纵向隔板的舷侧对比································ ········ 48 3.3 本章小结································ ································ ···················· 52 第四章 船舶舷侧结构抗爆性能优化设计································ ···················· 53 4.1 优化设计的基本概念 53 4.2 优化算法································ ································ ···················· 53 4.3 优化流程································ ································ ···················· 54 4.4 具有抗冲击性能舰船舷侧结构的优化设计 ································ ·········· 56 4.4.1 尺寸优化 ································ ································ ·············· 57 4.4.2 形状优化 ································ ································ ·············· 61 4.5 本章小结································ ································ ···················· 64 第五章 某舰船舷侧结构在水下爆炸载荷作用下的多目标优化························· 65 5.1 引言································ ································ ·························· 65 5.2 船舯三舱段有限元模型 65 5.3 优化数学模型································ ································ ·············· 66 5.3.1 优化设计变量 ································ ································ ········ 67 5.3.2 约束条件 ································ ································ ·············· 69 5.3.3 目标函数 ································ ································ ·············· 70 5.3.4 优化问题的数学描述 ································ ······························· 70 5.4 优化算法与实现途径 70 5.4.1 遗传优化算法 ································ ································ ········ 71 5.4.2 模型响应预报 ································ ································ ········ 72 5.5 优化结果与分析································ ································ ··········· 78 5.5.1 板厚优化 ································ ································ ·············· 78 5.5.2 形状优化 ································ ································ ·············· 80 5.5.3 综合优化 ································ ································ ·············· 80 5.5.4 优化结果对比 ································ ································ ········ 81 5.6 本章小结································ ································ ···················· 81 第六章 结束语 ································ ································ ···················· 82 参 考 文 献 ································ ································ ······················· 84 致 谢 ································ ································ ······························· 88 攻读硕士学位期间已发表或录用的论文 ································ ····················· 89 VI 第一章 绪论 1.1 研究背景和研究目标 近年来,我国的领海权益不断遭受一些邻国的侵犯,甚至有部分争端还在不断 升级。与日本在东海上领海区域的争议从 2003 年被提及就未曾间断,2010 年钓鱼岛 海域的撞船事件更让中日关系一度紧绷;与韩国在东海和黄海都存在领海争端,相 比于与日本的争端,争议面积还要大 2 万平方公里;与越南、菲律宾、马来西亚和 文莱等国在南沙群岛的领土争端更是可以追溯到十九世纪七十年代,目前被侵占的 岛屿多达 40 多个。作为一个不主张武力解决争端问题的大国,军事力量作为一种震 慑力量在掌控领海争端问题的格局上起着至关重要的作用。 对海上军事力量最直接的认识就体现在航母、战斗舰艇等水上作战工具的实力。 在军事冲突期间,在一线执行战斗任务的舰队可能会遭到各式各样的水面战斗武器 的攻击,其中以反舰导弹、反雷达导弹以及鱼雷为威胁水面舰艇生命力的主要杀伤 武器。当受到这些武器攻击的时候,即使结构距离爆炸中心有一定距离,其舰船的 结构、设备和人员也可能会承受不同程度不可逆的伤害。特别是近年来,随着科技 发展,水下兵器的打击力度、打击精度、打击手段都逐渐强化和丰富,一旦设备或 结构遭到破坏,轻则丧失战斗力,重则舰毁人亡。军事力量在面对这些战争中的主 要威胁时,作战能力是一方面,更重要的是遭受此类冲击载荷作用时船体的抵抗能 力。举一个例子,1982 年英国驱逐舰谢菲尔德号在马岛海战中被一枚掠海飞行的导 弹击中了舷侧,并因此舰沉大海,而在二战时美国的一艘小排水量舰艇在遭受了日 本四颗炸弹和五架装满炸弹的神风飞机击中仍旧顺利返航。由此可见,开展水下爆 炸载荷作用机理、结构在水下爆炸作用下的响应机理以及结构抗冲击性能理论、优 化设计等领域的理论及实验研究对提高舰船生命力至关重要,具有举足轻重的现实 意义和应用价值。 水下爆炸是指在水下发生的作用时间极短的,且在极小体积内发生极大能量转 化的过程,主要可以分为接触爆炸和非接触爆炸。接触爆炸主要是会造成结构的局 部破损,影响舰船生命力,如错误!未找到引用源。所示;非接触爆炸主要是导致 结构发生重大变形、各类设备严重及大范围破坏,严重时会产生舰船结构的破坏, 是目前造成舰船失效的重要模式,如图 1-2 所示。水面舰船及设备在受到此类载荷时 1 的破坏方式主要体现在三个方面:第一,冲击加速度过大,是设备及人员受到损伤; 第二,冲击所引起的结构位移过大,破坏设备的正常工作环境,导致设备失效;第 三,爆炸强度大,致使结构损坏。因此,对结构速度、加速度、结构位移等动态响 应特征的研究对于优化舰船的性能和生命力有着十分重要的作用。 与此同时,舰船的抗冲击防护和优化研究也是舰船抗冲击性能研究的一个非常 重要的内容,它主要涵盖了舰船结构抗爆的防护机理和试验研究以及新型的抗冲击 结构研究两个部分。事实证明,吸能效果好、制造工艺简、结构质量轻并且能够满 足强度等各方面设计要求的新型结构能够很大程度地提高舰船的抗冲击能力。而如 何设计出这样的结构是目前舰船研究的一个热点问题。 图1-1 水下接触爆炸产生的局部毁伤 Figure 1-1 Local Damage Caused by Contact Explosion 图1-2 水下非接触爆炸产生的大面积变形及局部毁伤 Figure 1-2 Deformation and Damage Caused by Non-contact Explosion 2 目前对于水下爆炸及对结构作用的方法主要有三种:理论研究、实验研究以及 数值仿真。对于舰船来讲,水下爆炸载荷会使结构在极短的时间内承受巨大的冲击。 在这种冲击之下,结构会产生复杂的非线性动态响应,属于强非线性的大变形问题, 同时,由于水下爆炸冲击波和舰体结构存在耦合且水下爆炸问题自身就存在许多复 杂影响因素,企图使用解析法通过建立精确的数学模型来研究此类问题是十分困难 的。相反,通过实验法的研究可以获取相对精确可靠的实验数据,但鉴于舰船自身 昂贵的造价以及单个样本对于普遍适用性结论极其局限性的贡献,实验法的研究也 无法系统进行。不过近几年来,计算机技术有了快速发展,硬件性能也有大幅度的 提升,高精度的数值仿真得到了越来越多学者的关注,逐渐成为水下爆炸冲击响应 研究的最主要的方法。 本文主要针对实际工程问题,综合考虑水下爆炸问题和优化问题。一方面对于 舰船舷侧结构在瞬时载荷作用下的响应进行研究,同时对已提出的抗冲击结构进行 研究和对比,解决满足强度稳性要求下的船舶抗冲击性能的优化问题;另一方面展 开对于舰船舷侧抗冲击结构形状优化的研究,探索新型轻量化的舷侧抗冲击结构, 这对于提高舰船的各项性能具有重要意义。 1.2 国内外研究现状 1.2.1 水下爆炸载荷研究现状 在水下爆炸的理论研究方面,Robert Hugh Cole 于 1948 年出版的《Underwater Explosion》[1]一书揭开了人们对水下爆炸研究的序幕。书中以 1941 年到 1946 年间美 国的相关研究成果为基础,详细地解释了水下爆炸的基本现象、物理和化学变化特 性、水下爆炸载荷的传播过程和分布特点、水下爆炸的试验研究方法以及水下爆炸 的破坏过程,除此之外还在理论层面探讨了水下爆炸的机理。B.V.Zamyshlyaev 紧接 其后,于 1973 年出版了著作《Dynamic Loads in Underwater Explosion》[2,3],其中 Zamyshlyaev 推导给出了不同情况水下爆炸的载荷公式。在实验数据缺乏的环境之 下,Cole 和 Zamyshlyaev 的半理论半经验公式被沿用至今,仍然是现今理论研究的 一个重要基础。 与理论并行的试验研究也一直是水下爆炸研究的重要手段,是水下爆炸最直接 的数据获取来源,可以获得准确可靠的结果。目前水下爆炸的试验研究方法主要有 高速摄影技术和水下爆炸载荷测试技术。高速摄影技术主要用于水下爆炸气泡脉动 3 过程的研究,Akio Kira 通过该技术研究了大剂量球形爆炸物水下爆炸的现象以及水 下冲击波的传播轨迹[4];Kenji Murata 精确测量了水下爆炸这一现象[5];H.G.Snay 通 过高速摄影技术获得了气泡产生以及脉动过程的资料,研究了半无限水介质中水下 爆炸的流体力学[6];John.M.Brett 进行了 1kg 至 5kg 药当量水下爆炸的高速摄影试验 [7];国内张立等人也在浅水中进行了爆炸试验,并使用高速摄像机得到了气泡脉动参 数的研究数据,得到了随装药深度增加,气泡脉动周期、最大半径都呈减小趋势, 气泡能变化不显著的结论[8]。水下爆炸载荷测试技术主要分为电测法和光测法,Cole 使用半理论半经验的计算方法得到了冲击波压力随距离变化的公式[1];Slike 对深水无 限介质中爆炸载荷的分布特性进行了研究[9];Swisdak 研究了装药密度和装药半径对 压力变化的影响[10];钱胜国等人提出了从爆炸能量溢出与爆深的关系修正 Cole 冲击 波压力公式的观点[11];王中黔等人进行了一系列集中药包水下爆炸的测试,研究了 冲击波压力和水深的关系,回归得到 10m 水深单药包裸露爆炸冲击波压力计算公式 [12]。 随着计算机技术的迅速发展,水下爆炸载荷的数值研究方法逐渐成为主流的研 究方法之一。爆炸力学的问题通常可以采用双曲型偏微分方程组来描述,比普通的 流体力学问题和结构动力学问题要复杂许多。为了使数值模拟能够求解此类问题, 必须将连续的微分方程组离散,方法主要有有限差分法和有限元法。其中有限元法 由于运动方程独立于网格形状以及便于编程计算的特点在水下爆炸载荷的研究中得 到了越来越广泛的应用,典型的程序包括 DYNA、DYTRAN、ABAQUS 等。Keller[13]、 Klaseboer[14]、鲁传敬[15]、刘榕海[16]等人对气泡的形成和脉动过程进行了数值模拟, 研究了该过程气泡半径、脉动周期以及能量变化等动力特性。Chan[17]、Britt[18]、王 继海[19]等人对冲击波的产生和传播过程进行了数值模拟,研究了水下爆炸的冲击效 应和反射变化。 1.2.2 水下爆炸载荷作用下的舰船结构动响应研究现状 水下爆炸载荷的研究表明,水下爆炸会形成冲击波、气泡脉动和空化效应,作 用在结构上的载荷主要包括两个阶段:冲击波载荷和气泡脉动载荷。 试验研究领域主要包含了水下爆炸载荷对简单结构的动态响应试验以及对实船 动态响应的试验研究。在对简单结构的动态响应试验研究问题上,Rajendran[20,21]、 Ramajeyathilagam[22]、Houlston[23,24]、张效慈[25]等人分别就不同强度、不同材料、不 4 同形状的矩形板、圆柱壳等局部结构进行了系列试验研究,获得了应变、位移等参 数,并与数值模拟结果进行了比对。实船试验由于十分昂贵,且部分属于保密资料, 因此相关资料相对少见,现有的资料包括 1992 年在“EXMARGOTTINI1”号驱逐舰 上的六次爆炸试验、意大利对一艘 2500 吨驱逐舰的实船爆炸试验以及国内对某舰船 的非接触爆炸试验,获取的数据结果主要包括加筋板在载荷作用下的动态响应分布 情况、舰船在震荡效应下的振型和频率以及爆炸对于总纵强度和局部强度的影响。 和水下爆炸载荷的研究相同,数值模拟在结构响应的研究中也占有非常重要的 位置。水下爆炸对于结构局部的作用往往可以反映爆炸载荷对结构响应的本质
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 行业资料 > 航海/船舶

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服