资源描述
二次函数习题精选
1、抛物线过第二、三、四象限,则 0, 0, 0.
2、抛物线在轴上截得的线段长度是 .
3、抛物线,若其顶点在轴上,则 .
4、已知二次函数,则当 时,其最大值为0.
5、二次函数的值永远为负值的条件是 0, 0.
1
-1
-3
3
x
y
O
A
B
C
6、如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、点B(3,0)和点C(0,-3),一次函数的图象与抛物线交于B、C两点。
⑴二次函数的解析式为 .
⑵当自变量 时,两函数的函数值都随增大而增大.
⑶当自变量 时,一次函数值大于二次函数值.
⑷当自变量 时,两函数的函数值的积小于0.
7、已知抛物线与轴的交点都在原点的右侧,则点M()在第 象限.
8、已知抛物线与轴的正半轴交于点A,与轴的正半轴交于B、C两点,且BC=2,S△ABC=3,则= ,= .
O
x
y
-1
1
9、二次函数的图象如图所示,则,, 这3个式子中,值为正数的有( )
A.4个 B.3个 C.2个 D.1个
10、在同一直角坐标系中,函数与的图象大致如图 ( )
11、已知二次函数的图象如图,下列结论:
①;② ; ③; ④;⑤,△
正确的个数是 ( )
A 4 个 B 3个 C 2 个 D 1个
12、已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么( )
A.a>0,b>0,c>0 B.a<0,b<0,c=0 C.a<0,b<0,c>0 D.a>0,b>0,c=0
13、已知抛物线C1的解析式是,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.
14、(2009黄石)已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,
下列结论:①abc>0 ②2a+b<0 ③4a-2b+c<0 ④a+c>0,
其中正确结论的个数为( )
A、4个 B、3个 C、2个 D、1个
D
C
B
F
E
A
图3
15、已知:如图3,在Rt△ABC中,∠C=90°,BC=4,
AC=8,点D在斜边AB上, 分别作DE⊥AC,DF⊥BC,垂足
分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)用含y的代数式表示AE.
(2)求y与x之间的函数关系式,并求出x的取值范围.
(3)设四边形DECF的面积为S,求出S的最大值.
16、已知:,是方程的两个实数根,且,
抛物线的图象经过点A(),B().
(1) 求这个抛物线的解析式;
(2) 设(1)中的抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和的面积;
(3) 是线段上的一点,过点作轴,与抛物线交于点,若直线把分成面积之比为的两部分,请求出点的坐标.
17、如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上。
⑴求△ABC中AB边上的高h;
⑵设DG=x,当x取何值时,水池DEFG的面积最大?
⑶实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树。
18、一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达最大高度3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。
(1)建立如图所示的直角坐标系,求抛物线的解析式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?
19、二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C,
(1)求A、B、C三点的坐标;
(2)如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)是否存在这样的点P,使得PO=PA,若存在,求出点P的坐标;若不存在,说明理由。
20、(2009广东梅州)如图 12,已知直线过点和,是轴正半轴上的动点,的垂直平分线交于点,交轴于点.
L
A
O
M
P
B
x
y
L1
图12
Q
(1)直接写出直线的解析式;
(2)设,的面积为,求关于t的函数关系式;并求出当时,的最大值;
(3)直线过点且与轴平行,问在上是否存在点, 使得是以为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.
21、如图,已知抛物线的对称轴方程为x=4,该抛物线与x轴交于A、B两点,与y轴交于C点,O是坐标原点,且A、C的坐标分别为(2,0)、(0,3)。(1)、求此抛物线的解析式;(2)、抛物线上有一点P,满足∠PBC=90°,求P点的坐标;(3)y轴上是否存在一点E,使得△AOE与△PBC是相似三角形,若存在,求出点E的坐标,若不存在,请说明理由。
22、如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于C点,已知抛物线的对称轴为x=1,B(3,0),C(0,-3)。
(1)、求抛物线的解析式。
(2)、在对称轴上是否存在一点P,使得点P到B、C两点距离之差最大?若存在,求出点P的坐标;若不存在,请说明理由。
(3)、平行于x轴的一条直线交抛物线于M、N两点,若以为MN的中点到x轴的距离刚好等于的MN长的一半,求此这条直线的解析式。
23、(发散70页):如图所示,二次函数y=ax2+bx+c的图象与x轴交于点A和点B(A、B分别位于原点O的两侧),与y轴的负半轴交于点C,且tan∠OAC=2,AB=CB=5。
(1) 求直线BC和二次函数的解析式;
(2) 直线BC上是否存在这样的点P,使△PAB和△OBC相似?若存在,求出满足条件的点P的坐标,若不存在,请说明理由。
24、(发散71页):已知抛物线y=mx2-(m-5)x-5 (m>0)与x轴交于两点A(x1,0)、B(x2,0)( x1<x2),与y轴交于点C,且AB=6。
(1)求抛物线和直线BC的解析式;
(2)画出它们的大致图象;
(3)抛物线上是否存在点M,过点M作MN⊥x轴于点N,使△MBN被直线BC分成面积比为1:3的两部份?若存在,请求出点M的坐标,若不存在,请说明理由。
25、(发散87页):已知二次函数y=x2+2ax-2b+1和y=-x2+(a-3)x+b2-1的图象都经过x轴上两个不同的点M、N,求a、b的值。
26、(2007海口)如图,已知抛物线y=ax2+bx+c经过O(0,0),A(4,0),B(3,)三点,连结AB,过点B作BC∥x轴交抛物线于点C。
(1)求该抛物线的解析式;
(2)两个动点P、Q分别从O、A两点同时出发,以每秒1个单位长度的速度运行,其中,点P沿着线段OA向A点运动,点Q沿着折线A→B→C的路线向点C运动。设这两个动点运动的时间为t(秒)(0<t<4)。△PQA的面积记为S。
①求S与t的函数关系式;
②当t为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
③是否存在这样的t值,使得△PQA是直角三角形?若存在,请直接写出此时的P、Q两点的坐标;若不存在,请说明理由。
27、(2008威海)如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5,点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F。
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值;
(3)试判断四边形MEFN能否为正方形,若能,求出它的面积;若不能,请说明理由。
28、(发散94页)已知抛物线y=x2+mx-与抛物线y=x2-mx+在同一坐标系中的位置如图所示,其中一条与x轴交于点A和B。
(1)试判断哪条抛物线经过A,B两点,并说明理由;
(2)若A,B两点到原点的距离OA,OB满足,求经过A,B两点的这条抛物线的解析式。
第7题图
(2)
A
D
F
B
E
C
(1)
E
F
G
H
A
B
D
C
29、(2008荆门)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.
(1)判断图(2)中四边形EFGH是何形状,并说明理由;
(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?
30、(2009广州)如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
31、(2009深圳)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
32、(导学练54页)已知Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系内,使其斜边AB与x轴重合(其中OA<OB),直角顶点在y轴正半轴上。如图1
(1)求线段OA,OB的长和经过点A,B的抛物线的解析式;
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。
①当△BDE是等腰三角形时,直接写出此时点E的坐标;
②连接CD,CP,如图3,△CDP是否有最大面积?若有,求出它的最大面积和此时点P的坐标;若没有,请说明理由。
(第33题)
A
B
F
C
G
D
H
Q
P
N
M
红
黄
紫
E
33、(2009吉林)某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中.准备在形如Rt的四个全等三角形内种植红色花草,在形如Rt的四个全等三角形内种植黄色花草,在正方形内种植紫色花草,每种花草的价格如下表:
品种
红色花草
黄色花草
紫色花草
价格(元/米2)
60
80
120
设的长为米,正方形的面积为平方米,买花草所需的费用为元,解答下列问题:
(1)与之间的函数关系式为 ;
(2)求与之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求的长.
x
y
O
1
2
3
2
1
A
34、(2009江苏)如图,已知二次函数的图象的顶点为.二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上.
(1)求点与点的坐标;
(2)当四边形为菱形时,求函数的关系式.
y
x
O
A
B
C
35、(2009武汉)如图,抛物线经过、两点,与轴交于另一点.
(1)求抛物线的解析式;
(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;
(3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.
36、E
A
B
G
N
D
M
C
(第22题图)
(2009德州)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.
37、(2009宜宾)如图,在平面直角坐标系xoy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB.tan∠BA0=,点B的坐标为(7,4).
(1)求点A、C的坐标;
(2)求经过点0、B、C的抛物线的解析式;
(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由.
38、(2009泸州) 如图12,已知二次函数 的图象与x轴的正半轴相交于点A、B,与y轴相交于点C,且.
(1)求c的值;
(2)若△ABC的面积为3,求该二次函数的解析式;
图12
图12
(3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使△PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.
39、(2009成都)在平面直角坐标系xOy中,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COS∠BCO=。
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;
(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
40、(2009莆田)已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值:
(3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
41、(2009湖州)已知抛物线y=x2-2x+a(a<0)与轴相交于点,顶点为.直线y=0.5x-a分别与x轴,y轴相交于B、C两点,并且与直线AM相交于点N.
(1)填空:试用含a的代数式分别表示点M与N的坐标,则M ( , ), N ( , );
(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;
(3)在抛物线()上是否存在一点,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.
第(2)题
x
y
B
C
O
D
A
M
N
N′
x
y
B
C
O
A
M
N
备用图
42、x
y
D
C
A
O
B
(第24题)
(2009江西)如图,抛物线与轴相交于、两点(点在点的左侧),与轴相交于点,顶点为.
(1)直接写出、、三点的坐标和抛物线的对称轴;
(2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点作交抛物线于点,设点的横坐标为;
①用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形?
②设的面积为,求与的函数关系式.
43、(2009安顺)如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。
(1) 求抛物线的解析式;
(2) 设抛物线顶点为D,求四边形AEDB的面积;
(3) △AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。
44、第25题图
(2009荆门)一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
45、(2009义乌)如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。
(1)当时,折痕EF的长为 ;当点E与点A重合时,折痕EF的长为 ;
(2)请写出使四边形EPFD为菱形的的取值范围,并求出当时菱形的边长;
(3)令,当点E在AD、点F在BC上时,写出与的函数关系式。当取最大值时,判断△EAP与△PBF是否相似?若相似,求出的值;若不相似,请说明理由。
46、(2009义乌)已知点A、B分别是轴、轴上的动点,点C、D是某个函数图像上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。例如:如图,正方形ABCD是一次函数y=x+1图像的其中一个伴侣正方形。
(1)若某函数是一次函数y=x+1,求它的图像的所有伴侣正方形的边长;
(2)若某函数是反比例函数y=kx-1(k>0),他的图像的伴侣正方形为ABCD,点D(2,m)(m <2)在反比例函数图像上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图像的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标 ,写出符合题意的其中一条抛物线解析式 ,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?(本小题只需直接写出答案)
(第47题)
47、(2009台州)如图,已知直线 交坐标轴于A、B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.
(1)请直接写出点C、D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间的函数关系式,并写出相应自变量t的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时D停止,求抛物线上C、E两点间的抛物线弧所扫过的面积.
备用图
y
x
O
C
D
B
A
3
3
6
48、(2009南充)如图9,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:3S1=2S?若存在,求点E的坐标;若不存在,请说明理由.
49、(2009丽水)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.
(第24题)
(1)填空:菱形ABCD的边长是 、面积是 、
高BE的长是 ;
(2)探究下列问题:
①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为每秒1个单位,点Q的速度变为每秒k
个单位,在运动过程中,任何时刻都有相应的k值,使得
△APQ沿它的一边翻折,翻折前后两个三角形组成的四边
形为菱形.请探究当t=4秒时的情形,并求出k的值.
50、(2009宁德)如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
y
x
A
O
B
P
N
图2
C1
C4
Q
E
F
图(2)
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
y
x
A
O
B
P
M
图1
C1
C2
C3
图(1)
51、(2009益阳)阅读材料:
图12-2
x
C
O
y
A
B
D
1
1
如图12-1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题: 如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;
(3)是否存在一点P,使S△PAB= ,若存在,求出P点的坐标;若不存在,请说明理由.
52、(2009衡阳)如图12,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.
B
x
y
M
C
D
O
A
图12(1)
B
x
y
O
A
图12(2)
B
x
y
O
A
图12(3)
Ⅰ部初三数学培优材料十二
题型:二次函数专题
一.例题讲解
例1.如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;
(3)在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(4)将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?
例2.如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.
(1)求出经过A、D、C三点的抛物线解析式;
(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;
(3)设AE长为y,试求y与t之间的函数关系式;
(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.
例3.如图,二次函数y=-ax2+ax+a(a>0)的图象与y轴交于点A,与x轴交于点B、C,过A点作x轴的平行线交抛物线于另一点D,线段OC上有一动点P,连接DP,作PE⊥DP,交y轴于点E.问题:
(1)当a变化时,线段AD的长是否变化?若变化,请说明理由;若不变,请求出AD的长;
(2)若a为定值,设OP=x,OE=y,试求y关于x的函数关系式;
(3)若在线段OC上存在不同的两点P1、P2使相应的点E1、E2都与点A重合,试求a的取值范围.
例4.已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.
例5.如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△,求△与五边形OEFBC重叠部分的面积.
二.课堂练习
1.抛物线y=a(x+6)2-3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.
(1)求这个抛物线的解析式;
(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;
(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由
2.已知一元二次方程x2+ax+a-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为 时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为 ?若存在求出P点坐标,若不存在请说明理由.
3.如图,抛物线y= x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.
二次函数应用(能力提高)
一、选择题:
1、二次函数y=x2-(12-k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取( )
(A)12 (B)11 (C)10 (D)9
2、下列四个函数中,y的值随着x值的增大而减小的是( )
C
A
y
x
O
(A)(B)(C)(D)
3、抛物线y=ax2+bx+c的图象如图,OA=OC,则 ( )
(A) ac+1=b (B) ab+1=c (C)bc+1=a (D)以上都不是
4、若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是 ( )
(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<1
5、如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于( )
(A)8 (B)14 (C)8或14 (D)-8或-14
6、把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )
(A) (B) (C)
(D)
7、(3)已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过( )
A.一、二、三象限 B.一、二、四象限 C.一、三、四象限 D.一、二、三、四象限
8、若,则二次函数的图象的顶点在 ( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
9、已知二次函数 , 为常数,当y达到最小值时,x的值为 ( )
(A) (B) (C) (D)
10、当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是( )
二、填空题:
11、已知二次函数y=ax2(a≥1)的图像上两点A、B的横坐标分别是-1、2,点O是坐标原点,如果△AOB是直角三角形,则△OAB的周长为 。
12、已知二次函数y=-4x2-2mx+m2与反比例函数y=的图像在第二象限内的一个交点的横坐标是-2,则m的值是 。
13、有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式是_______________。
14、如图(5)A. B. C.是二次函数y=ax2+bx+c(a≠0)的图像上三点,根据图中给出的三点的位置,可得a-.——0,c——0, 15、老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。
乙:函数的图像经过第一象限。丙:当x<2时,y随x的增大而减小。丁:当x<2时,y>0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________。
16、已知二次函数y=x2+bx+c的图像过点A(c,0),且关于直线x=2对称,则这个二次函数的解析式可能是————————————(只要写出一个可能的解析式)
17、炮弹从炮口射出后,飞行的高度h(m)与飞行的时间t(s)之间的函数关系是h=v0tsinα—5t2,其中v0是炮弹发射的初速度, α是炮弹的发射角,当v0=300(), sinα=时,炮弹飞行的最大高度是___________。
18.已知点P (a,m)和Q( b,m)是抛物线y=2x2+4x-3上的两个不同点,则a+b=_______.
19.已知二次函数的图象与x轴交于点(-2,0),(x1,0)且1<x1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c< 0,④2a-b+l>0.其中的有正确的结论是(填写序号)__________.
三、解答题:
20.将进货单价为40元的商品按50元售出时,就能卖出500个,已知这个商品每个涨价1元,其销售量就减少10个。(1)问:为了赚得8000元的利润,售价应定为多少?这时进货多少个?
(2)当定价为多少元时,可获得最大利润?
21.已知y是x的二次函数,且其图象在x轴上截得的线段AB长4个单位,当x=3时,y取得最小值-2。(1)求这个二次函数的解析式 (2)若此函数图象上有一点P,使ΔPAB的面积等于12个平方单位,求P点坐标。
22.已知抛物线与x轴交于A、 B两点,与y轴交于点C.是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.
23.已知直线与x轴交于点A,与y轴交于点B;一抛物线的解析式为.
(1)若该抛物线过点B,且它的顶点P在直线上,试确定这条抛物线的解析式;
(2)过点B作直线BC⊥AB交x轴交于点C,若抛物线的对称轴恰好过C点,试确定直线的解析式.
24.如图,已知抛物线与坐标轴交于三点,点的横坐标为,过点的直线与轴交于点,点是线段上的一个动点,于点.若,且.
(1)确定的值:
(2)写出点的坐标(其中用含的式子表示):
(3)依点的变化,是否存在的值,使为等腰三角形?若存在,求出所有的值;若不存在
展开阅读全文