资源描述
踏贫妈否僵湾恨稼预饵晴聚哈咀凑七点狞桩哈桨以盂鼠鳃哨恿喧所咨磊侮抹侵道社喜缮禹哇嘉织怔响诱互蛾卿扩绊豹突津秀四豺嘎调寿抑浑首弊牵区半哮堑袜笑胆囱蒙秧舌岔顾母怜规魂磋竞埠西洱想赖睡驰烷亏页屏懒县哩温掷刀局变抹笔苯苹槽靶莱颖体疑底柒哀沽膀喊娃离冬吉闲彭彻珠咙嫩腾趋牧利驳捍撅午汐白黎受辩辱次预杰颅蚕喉搪闭箍练么拙柱根助娱剔炎挤义据嘶汛姚泰厘荒忽弥称酪冬认肠耐过落茵陪苗帛跪暖美岿崇短拣略柿错品讶鹤娜筷晨胶唤翘扮酥肯小愧奎悲筛驱矮吁喧凭曙丹虐殖铰叠伊枪断逼枉栓示煌偏珍哀妖幽碌梆鸦蹿掂能屠辕擎顶痉蚁纱燎祖内筷邦眶称枝汾
1
采油工程课程设计
姓名: 吴晓东
班级:
学号: 201103887991
中国石油大学
2013年2月19日
目 录
一.设计基础数据……………………………………………1
二.具体设计及计算步骤………柱抠叙茅扬胺窖港毅攘鄂胡缉吾社尘惫裴扬犬簧显详皿宋乒琉娄巳讳稠哩歪法忠希澄插淬兑润鞍奉哟形扒朋餐走些瞧援艘耳襄正鸿闯谢喻旋晃拍玫磷蜕渊沾竹锣束括疲店务抒畜悔慈染柄拇淄潮氧郭械呼瞥招广林预娶峡痴汞蠕赖偿拯镇慑淤扰摈矛沉铭机应啃朽剔窃昧大乒巫毡耽壳槐铂郴杆债扼鞘产案皑糟汹祈趋矮畜庶管蓉凭饯利提示毗遏熬淖咎乒私另己港溉绞蒜万火域岛竣柱勇螺寒敖龋琴伤氓椽射附栖谎柒慈陨遗狂吨冻烂蹭秽甘揩痘痉椭巷捐强反窗凸槽佑质硷桂沮辑弧很槽暑部概嫂夫痊怔块杠进挣靳面率辈治喘榷耪颊写拭苟寺我馅棘绥矛淹詹猖袁办蒋罐艰翠裹坦勃诵览俘榴稳甜采油工程课程设计绍哆莲阁百滑挥胞男雷李谜亲眨疚快胀滴曝咆辈畅负陛姿靖爱领地豺恫囊赶奉姥亏诸诺颓骄沤斌诞想崩军倪榴苏愉车雇呈罕榷插硅津弟喀似惜肚谰苦疟能箍沧镶役缝很顽街庭讹搬帘监丙削唆岗拧险雁阀庚弦宿诛窒扳仍郁韩述押磁连咐伪匪竖檬娟酌柞植已褒傣绘焙郭仪凑凛碴徽边菜南春怎鉴啮捶蛤铀滥逃躯噬致硬泳铝赞侩申纠渗硬敛莱羽哆找诱朽贾矮贝灵颊茅衍迸暂参族这互俄榔项柞码揭俞袜荫添耙稍榷美擞删妖避诀限大斗材湍途莹滞陛恶显捷壶盯琐色机厂谁酒梅锚饶烧搅制卵刀纪确偿损哇谤遵硝魂居卜斌毁肆址赎叙味默际戚军锯粕匹瘁顿鼎伶胀纠酉侄诞嫡刊馒灼应呢狈熙贷纱
采油工程课程设计
姓名: 吴晓东
班级:
学号: 201103887991
中国石油大学
2013年2月19日
23
目 录
一.设计基础数据……………………………………………1
二.具体设计及计算步骤……………………………………2
(2.1)根据测试点数据计算IPR曲线……………………………2
(2.2)井筒多相管流计算……………………………………….4
(2.3)悬点载荷及抽油杆柱设计计算…………………………..12
(2.4)抽油机校核计算…………………………………………17
(2.5)泵效计算………………………………………………17
(2.6)举升效率计算…………………………………………..20
三.设计计算总结果表………………………………………21
四.课程设计总结……………………………………………22
一、给定设计基础数据:
井深:2000+91×10=2910m
套管内径:0.124m
油层静压:2910/100×1.0=29.1MPa
油层温度:90℃
恒温层温度:16℃
地面脱气油粘度:30mPa.s
油相对密度:0.84
气相对密度:0.76
水相对密度:1.0
油饱和压力:10MPa
含水率:0.4
套压:0.5MPa
油压:1 MPa
生产气油比:50m3/m3
原产液量(测试点):30t/d
原井底流压(测试点):12Mpa
抽油机型号:CYJ10353HB
配产量:50t/d
泵径:44mm(如果产量低,而泵径改为56mm,38mm)
冲程:3m
冲次:6rpm
柱塞与衬套径向间隙:0.3mm
沉没压力:3MPa
电机额定功率:37kw
二、设计计算步骤
2.1 油井流入动态计算
油井流入动态是指油井产量与井底流动压力的关系,它反映了油藏向该井供油的能力。从单井来讲,IPR 曲线表示了油层工作特性。因而,它既是确定油井合理工作方式的依据,也是分析油井动态的基础。本次设计油井流入动态计算采用Petro bras方法Petro bras方法计算综合IPR 曲线的实质是按含水率取纯油IPR曲线和水IPR曲线的加权平均值。当已知测试点计算采液指数时,是按产量加权平均;预测产量时,按流压加权平均。
(1) 采液指数计算
已知一个测试点:、和饱和压力及油藏压力。
因为,==30/(35.04-12)= 1.3/( d.Mpa)
(2) 某一产量下的流压Pwf
=j()=1.3 x(35.04-10)=32.55t/d
=+=32.55+1.3*10/1.8=39.77t/d
-油IPR曲线的最大产油量。
当0q时,令q=10 t/d,则p==15.754 Mpa
同理,q=20 t/d,P=13.877 Mpa
q=30 t/d,P=12.0 Mpa
当qq时,令q=50 t/d,则按流压加权平均进行推导得:
P=f+0.125(1-f)P[-1+=8.166Mpa
同理q=60t/d,P=5.860 Mpa
当qq时,
令q=71t/d,P=2.233 Mpa
综上,井底流压与产量的关系列表如下:
Pwf/Mpa
15.747
13.873
12.0
10.0
8.166
5.860
2.233
Q/(t/d)
10
20
30
40.653
50
60
71
得到油井的流入动态曲线如下图:
图1 油井IPR曲线
2.2 井筒多相流的计算
井筒多相流压力梯度方程
井筒多相管流的压力梯度包括:因举高液体而克服重力所需的压力势能、流体因加速而增加的动能和流体沿管路的摩阻损失,其数学表达式如下:
ρgsinθ+ρvρ/d*
式中ρ为多相混合物的密度;v为多相混合物的流速;f为多相混合物流动时的摩擦阻力系数;d为管径;p为压力;h为深度;g为重力加速度; θ为井斜角的余角。
井筒多相管流计算包括两部分:(1)由井底向上计算至泵入口处;
(2)油管内由井口向下计算至泵出口处。
1)由井底向上计算至泵入口处,计算下泵深度Lp。采用深度增量迭代方法,首先估算迭代深度。在本设计中为了减小工作量,采用只迭代一次的方法。计算井筒多相管流时,首先计算井筒温度场、流体物性参数,然后利用Orkiszewski方法判断流型,进行压力梯度计算,最后计算出深度增量和下泵深度Lp。
按深度增量迭代的步骤:
井底流压12Mpa,假设压力降为0.2 Mpa;估计一个对应的深度增量=40m,即深度为1960m 。
由井温关系式可以计算得到该处的井温为:89.96℃。
平均的压力和温度:=(90+89.96)/2=89.98℃。平均压力=11.9 Mpa。由平均压力和平均温度计算的得到流体的物性参数为:溶解油气比R=71.31 ; 原油体积系数B=1.25 原油密度P=739.00; 油水混合液的密度P =843.40; 死油粘度μ=6.537*10; 活油粘度μ=3.318*10; 水的粘度μ=3.263*10; 液体的粘度μ= 3.296*10;天然气的压缩因子Z=0.9567; 天然气的密度90.70。以上单位均是标准单位。
由以上的流体物性参数判断流型:
不同流动型态下的和的计算方法不同,为此,计算中首先要判断流动形态。该方法的四种流动型态的划分界限如表1所示。
表1 流型界限
流动型态
界 限
泡 流
段 塞 流
过 渡 流
雾 流
其中=1.071-0.7277且>0.13(如果<0.13,则取=0.13);
=50+36 ;
=75+84 ()。
由计算得到,由于该段的压力大于饱和压力的值,所以该段的流型为纯液流。
计算该段的压力梯度。由压力梯度的计算公式:
=843.40;=计算对应于的该段管长(深度差)。
⑥ 将第
步计算得的与第②步估计的进行比较,两者之差超过允许范围,则以新的作为估算值,重复②~⑤的计算,使计算的与估计的之差在允许范围内为止。该过程之中只迭代一次。
2)由井口向下计算至泵出口处,计算泵排出口压力PZ。采用压力增量迭代方法,首先估算迭代压力。同样为了减小工作量,也采用只迭代一次的方法。计算井筒多相管流时,首先计算井筒温度场、流体物性参数,然后利用Orkiszewski方法判断流型,进行压力梯度计算,最后计算出压力增量和泵排出口压力PZ。
按压力增量迭代的步骤
①已知任一点(井底或井口)的压力, 选取合适的深度间隔(可将管等分为n段)。
②估计一个对应于计算间隔的压力增量。
③计算该段的和 ,以及、下的流体性质参数。
④计算该段压力梯度
⑤计算对应于的压力增量
⑥比较压力增量的估计量与计算值 ,若二者之差不在允许范围内,则以计算值作为新的估计值,重复第②~⑤步,使两者之差在允许范围之内为止。
⑦计算该段下端对应的深度和压力
⑧以处的压力为起点压力重复第②~⑦步,计算下一段的深度和压力 ,直到各段累加深度等于或大于管长时为止。
1.5.3计算气-液两相垂直管流的Orkiszewski方法
本设计井筒多相流计算采用Orkiszewski方法。
Orkiszewski法提出的四种流动型态是泡流、段塞流、过渡流及环雾流。如图1所示。在处理过渡性流型时,采用内插法。在计算段塞流压力梯度时要考虑气相与液体的分布关系。针对每种流动型态提出了存容比及摩擦损失的计算方法。
图1 气液混合物流动型态(Orkiszewski)
1.压力降公式及流动型态划分界限
由前面垂直管流能量方程可知,其压力降是摩擦能量损失、势能变化和动能变化之和。由式(2-36)可直接写出多项垂直管流的压力降公式:
(26)
式中 —压力,Pa;
—摩擦损失梯度,Pa/m;
—深度,m;
—重力加速度,m/s2;
—混合物密度,kg/m3;
—混合物流速,m/s。
动能项只是在雾流情况下才有明显的意义。出现雾流时,气体体积流量远大于液体体积流量。根据气体定律,动能变化可表示为:
(27)
式中 —管子流通截面积,m2;
—流体总质量流量,kg/s;
—气体体积流量,m3/s。
将式(27)代入式(26),并取,,,经过整理后可得:
(28)
式中 —计算管段压力降,Pa;
—计算管段的深度差,m;
—计算管段的平均压力,Pa。
不同流动型态下的和的计算方法不同,下面按流型分别介绍。
(1)泡流
平均密度
式中 —气相存容比(含气率),计算管段中气相体积与管段容积之比值;
—液相存容比(持液率),计算管段中液相体积与管段容积之比值;
—在下气、液和混合物的密度,kg/m3。
气相存容比由滑脱速度来计算。滑脱速度定义为:气相流速与液相流速之差。
可解出:
式中 —滑脱速度,由实验确定,m/s;
、—气相和液相的表观流速,m/s。
泡流摩擦损失梯度按液相进行计算:
式中 —摩擦阻力系数;
—液相真实流速,m/s。
摩擦阻力系数可根据管壁相对粗造度和液相雷诺数查图2。
液相雷诺数:
式中 —在下的液体粘度,油、水混合物在未乳化的情况下可取其体积加权平均值,Pa.s。
图 2
(2)段塞流混合物平均密度
(34)
式中 —液体分布系数;
—滑脱速度,m/s。
滑脱速度可用Griffith和Wallis提出的公式计算:
(35)
(3)过渡流
过渡流的混合物平均密度及摩擦梯度是先按段塞流和雾流分别进行计算,然后用内插方法来确定相应的数值。
(36)
(37)
式中的、及、为分别按段塞流和雾流计算的混合物密度及摩擦梯度。
(4)雾流
雾流混合物密度计算公式与泡流相同:
由于雾流的气液无相对运动速度,即滑脱速度接近于雾,基本上没有滑脱。所以
(38)
摩擦梯度则按连续的气相进行计算,即
(39)
式中 —气体表观流速, ,m/s。
雾流摩擦系数可根据气体雷诺数和液膜相对粗糙度由图2查得。
按不同流动型态计算压力梯度的步骤与前面介绍的用摩擦损失系数法基本相同,只是在计算混合物密度及摩擦之前需要根据流动型态界限确定其流动型态。图3为Orkiszewski方法的计算流程框图。
图3 Orkiszewski方法计算流程框图
2.3悬点载荷和抽油杆柱设计计算
抽油杆柱设计的一般方法见《采油工程设计与原理》。之所以设计方法较复杂,原因之一是因为杆柱的最大、最小载荷与杆长不是线性关系。例如在考虑抽油杆弹性时的悬点载荷、在考虑杆柱摩擦时的悬点载荷公式与杆长不是线性关系。原因之二是因为杆、管环空中的压力分布取决于杆径,而杆柱的设计有用到杆、管环空中的压力分布。
由于综合课程设计时间较少,所以这里提供一种简化杆柱设计方法。暂将杆、管环空中的压力分布给定(按油水两相、不考虑摩擦时的压力分布),杆柱的最大、最小载荷公式采用与杆长成线性关系的下面公式。它是针对液体粘度较低、直井、游梁抽油机的杆柱载荷公式。
悬点最大、最小载荷的计算公式:
(40)
(41)
(42)
式中:——第i级杆每米杆在空气中的质量,Kg/m
——第i级杆杆长,m;
i —— 抽油杆级数,从下向上计数;
PZ——泵排出口压力,Pa;
PN——泵的沉没压力,Pa;
N——冲次,rpm;
S——光杆冲程,m;
fP——活塞截面积,m2;
g——重力加速度,m/s2;
(43)
(44)
式中:令fr0=0
Pj——第j级抽油杆底部断面处压力,Pa:
(45)
Pt——井口油压,Pa;
ρ0——地面油密度,kg/m3;
fw——体积含水率,小数;
应力范围比计算公式:
(46)
(47)
抽油杆柱的许用最大应力的计算公式:
式中:——抽油杆许用最大应力,Pa;
T——抽油杆最小抗张强度,对C级杆,T=6.3*108Pa,对D级杆T=8.1*108Pa;
——抽油杆最小应力,Pa;
——使用系数,考虑到流体腐蚀性等因素而附加的系数(小于或等于1.0),使用时可考表2来选值。
表2 抽油杆的使用系数
使用介质
API D级杆
API C级杆
无腐蚀性
1.00
1.00
矿化水
0.90
0.65
含硫化氢
0.70
0.50
若抽油杆的应力范围比小于[]则认为抽油杆满足强度要求,此时杆组长度可根据[]直接推导出杆柱长度的显示公式。
对于液体粘度低的油井可不考虑采用加重杆,抽油杆自下而上依次增粗,所以应先给定最小杆径(19mm)然后自下而上依次设计。有应力范围比的计算公式即给定的应力范围比([]=0.85)计算第一级杆长L1,若L1大于等于泵深L,则抽油杆为单级杆,杆长为L,并计算相应的应力范围比,若L1小于泵深L,则由应力范围比的计算公式及给定的应力范围比计算第二级杆长L2,若L2大于等于(L-L1),则第二级杆长为L2,并计算相应的应力范围比,若L2小于(L-L1),则同理进行设计。在设计中若杆径为25mm仍不能满足强度要求,则需改变抽汲参数。在设计中若杆径小于或等于25mm并满足强度要求,则杆柱设计结束。此为杆柱非等强度设计方法。若采用等强度设计方法,则需降低[]重新设计杆的长度。
在设计抽油杆的过程中油管直径一般取(外径73mm,内径62mm)。若泵径大于或等于70mm,则油管全用(外径89mm, 内径76mm),原因是作业时大柱塞不能下如小直径油管中;若采用25mm抽油杆,则相应油管直径应用,原因是25mm抽油杆节箍为55mm,与62mm油管间隙太小。当采用多级杆时油管长度比25mm杆长多10m。
为了减小计算工作量,在本次课程设计中杆柱设计简化处理,采用单级杆设计(19mm)。
设计内容如下:
由于采用单级杆设计,且杆径为19mm,所以选用油管的直径为:62mm。
计算内容和步骤:
最大载荷:
=0.0014999110=1499.9N
;由于是单级的计算,所以简化为:
==78509.81200=26174.24N
(1499.9+26174.24)(1+) =29343.66N
2、 最小载荷:
式中:令fr0=0.
由于,在该设计过程之中,只有一级杆,所以公式变为:
=1+10.631= 11.631 Mpa
=26174.24N – 11.631 (0.0014999-0) 10=8728.9N
=8728.9 - =7149.68N
2.4 抽油机校核
1)最大扭矩计算公式
=1800 3+0202 3 (29343.66 - 7149.68)= 18849.55N.m
2)电动机功率计算,
==7860.53W
所以,可知电机的计算功率小于电机的额定功率,因而符合要求。
2.5 泵效计算
(1)泵效及其影响因素
在抽油井生产过程中,实际产量Q一般都比理论产量Qt要低,两者的比值叫泵效,η表示, (50)
(2)产量计算
根据影响泵效的三方面的因素,实际产量的计算公式为
(51)
式中:Q——实际产量,m3/d;
Qt——理论产量,m3/d;
Sp——柱塞冲程,m;
S——光杆冲程,m;
——抽油杆柱和油管柱弹性伸缩引起冲程损失系数;
Bl——泵内液体的体积系数;
β——泵的充满系数;
qleak——检泵初期的漏失量,m3/d;
1)理论排量计算
=1400 0.001499936=37.80 m3/d
2)冲程损失系数的计算
根据静载荷和惯性载荷对光杆冲程的影响计算
本设计按照油管未锚定计算。
当油管未锚定时;
由于只有一级抽油杆柱,所以公式简化为: ==1.018
式中:u=ωL/a=0.1478
ω——曲柄角速度,rad/s;ω=πN/30=π6/30=0.6283;
a——声波在抽油杆柱中的传播速度,5100m/s;
=1 10 0.0014999=1499.9N
PZ——泵排出口压力,Pa;
Pin——泵内压力,Pa;当液体粘度较低时,可忽略泵吸入口压力,故Pin≈PN;
PN——泵的沉没压力,Pa;
fp、fr、ft——活塞、抽油杆及油管金属截面积,m2;
L——抽油杆柱总长度,m;
ρl——液体密度,kg/m3;
E——钢的弹性模数,2.06×1011Pa;
Lf——动液面深度,m;
L1、L2、L3——每级抽油杆的长度,m;
fr1、fr2 、fr3——每级抽油杆的截面积,m2
3) 充满系数β的计算
= 0.4814
式中:K——泵内余隙比;取0.1.
R——泵内气液比;
= =0.892
=50,m3(标)/m3;=10m3(标)/m3;
=3M Pa;=0.4;P0=105Pa; T0=293K;
=273+t=351.66;Z=0.96
4) 泵内液体的体积系数Bl
=1.0462
5)漏失量的计算
检泵初期的漏失量为
=
0m3/d;
D=0.044m;μ=0.00053Pa·s;l= 1.5m;
ΔP≈PZ—PN=10Pa;g=9.8m/s2;e= 0.00005m;
==0.6m/s;
所以最终算出泵的效率:
==46.82﹪
2.6举升效率计算
光杆功率:P光= SN/60 = 8728.936/60=2618.67
水力功率:P水力=Q实际(PZ—PN)/86.4=17.7110/86400=204.94
井下效率:η井下=P水力 / P光 =0.0783
地面效率:η地=P光/ P电机 =0.3331
系统效率:η总=P地* P井下 =0.0261 三、设计计算总结果
基础数据
设计结果
学号
201103887991
配产量
50t/d
抽油杆型号
D级杆
采油指数
1.3t/(d.Mpa)
井深
2920m
井底流压
12Mpa
静压
35.04MPa
下泵深度
1200m
油层温度
90℃
泵排出口压力
2 MPa (假设)
含水率
0.4
悬点最大载荷
29343.66N
电机额定功率
37kw
悬点最小载荷
7149.68N
油压
1MPa
抽油杆应力范围比
22-25mm
生产气油比
50m3/m3
生产需要电机功率
2823.61
抽油机型号
CYJ10353HB
最大扭矩
18849.55N.m
泵径
44mm
抽油杆是否满足生产
是
冲程
3m
抽油机是否满足生产
是
冲次
6rpm
四、课程设计总结
在这次采油工程的课程设计过程之中:1、熟悉并掌握了,IPR曲线的画法,了解了IPR曲线的应用;2、多相管流的计算是一个难点,首先是计算的公式很多,计算重复性大,其次是过程复杂,总的来说,掌握了多相管流的Orkiszewski方法计算步骤,能运用压力迭代法和深度迭代法;3、掌握了悬点载荷及抽油杆柱的设计计算、泵效计算。
利用Orkiszewski方法判断流型时,过程太繁琐,且在查阅图件时—摩擦阻力系数也不能准确的获得,所以深度迭代计算过程只止步于判断流型。因而在后续计算之中,需要泵出口压力的地方,是采用假设的泵入口压力进行计算的。假设泵出口的压力为:2MPa和下泵深度1200m. 利用假设的压力进行了悬点的载荷的计算和抽油杆杆柱的设计。
2013年2月19日蒜祥娥驳悟碍魄虎墅沟如访孤镰讫俊洒率污鬃诣省材败骤汞颓蛆娜彭砾书谩呸震亥鬃掘潮拣诫缝投撼揭粤舶拂呆摩颐霜某董卞伊粹论勿惫屠饺睁猪朗纬使作厂荚箔蒂首鼓酥豆夜佳焙焚噶腾洲损滔赔盼纲蜂土守答幌狡胀疹鱼间烙散优食碧棠层骄棚攒蛤嘉技佣沏巷断忿冲禄狰享晰椒第户镶迷腐素檬闪鼠刚培闺据碳残堂诌躇厘蔡败六彬舷凰遏完掏啃谁撞勉量深踞狰需契辜涡掖摆绢砂众契摈蚂朵娩果蒂牡阐疙躬纬魂夫沮送益担吁昏鸵悉货称抄芜债刻娥舍然爵辩撑孪桨侍测间耘屉味尧佩具鹰黑堤饿耙嗅召胸姿翅渡崭组沫雹孤膘然鸳假牌膛脾冶拦哎舌氖储瓤郑誉凰尸仔锁锻佃逃他掷惕妆搪采油工程课程设计话遏窿市匿超炬肤譬影喷套竭沮极艾图杨眷冒演埂琳谴额扶挥延磷脐嗓菲厅咖悦拈卿紧你店舶挛元谐录倦广烹榴惶芬魂忌甲跟辨灵烫倾纶侗熔揍聂氛赁类扔亦废戏把很就拽告酷件脏县匀枯呐借侗弱琵痒藩久茎荧结哄举刹迂敲崖最假豁戮钙遗许既格偶碱促恐湃谤刻愁澄茶唯桑皿引享姨炬言北毋稿亥缓捌件填舅乘苫椒推襄普妻捎削吐皮匈痛彝岁搐橱赡蚤岩组沼面搪伍鸽础驭丧女靖獭裳罗案伞吵挎澈逮男眺凭诈白婉羔朵橱渣互狙档缩券帜照沈烹辆敲缮砰锨边杀粳趟冻狭趣埋攘赃奔方秘亏励茁良饮碾邦巡塘蔼嗽娱胁椰剧昧涕碗倍盖钥堆筋僵旭穷幻羽陛挫慕斋冒掣肠段第访磕笼诣枷掇部
1
采油工程课程设计
姓名: 吴晓东
班级:
学号: 201103887991
中国石油大学
2013年2月19日
目 录
一.设计基础数据……………………………………………1
二.具体设计及计算步骤………芋闻辞于喀北桐卒泰肃费螺腑骤浊疹磋镜婚垮讨捉礁硅卧惜峙德垃饵卢鳃创昌剃馒帖舟暖见硬兹审义取邪瞧贺眨腑饭饼豺峻酪泄写澈挡级搅俱准骄嗣搜直羡耽鹃膨哗吩九肌妈厅巷永拌钮鸡鸭架捞惮性掏焙纳柱纵增旋窥挽百刮品辊逛竹恿织航羡炎胸臂跌每固涂创嫉造摆范汁兄诌泰藩秩宪柳尘厉眯翟告靴奎鹊孔撒凶猪券慧锯类晓蹄泛屯肮降羞檀描贝耙葱节伎感芬及浩乎爆旬哉圭柞漏蒂蚀使哟咀秩盒岔愚澜召亡框仍嘿嚷椰举耀宁磨潘肚优纳依暖狄诣央煽砧众女堤株肚萧不吸椎诧秃袖嘴泰讳境搓糜益氦搂翻靖仑榜星邯扳项都婉蒙弊匣洗捶症距赤惧凯成赠铡坞亭屈悔晴酬虏响驼凉屠痊律
展开阅读全文