收藏 分销(赏)

四棱锥P-ABCD的底面是正方形.doc

上传人:pc****0 文档编号:9440153 上传时间:2025-03-26 格式:DOC 页数:24 大小:1.10MB 下载积分:10 金币
下载 相关 举报
四棱锥P-ABCD的底面是正方形.doc_第1页
第1页 / 共24页
四棱锥P-ABCD的底面是正方形.doc_第2页
第2页 / 共24页


点击查看更多>>
资源描述
2006年高考专项训练------立体几何 1. 如图,四棱锥P-ABCD的底面是正方形, (1) 证明MF是异面直线AB与PC的公垂线; (2) 若,求直线AC与平面EAM所成角的正弦值 2. 已知三棱柱ABC-A1B1C1中,底面边长和侧棱长均为a,侧面A1ACC1⊥底面ABC,A1B=a, (Ⅰ)求异面直线AC与BC1所成角的余弦值; (Ⅱ)求证:A1B⊥面AB1C. 3. 如图,四棱锥的底面是边长为1的正方形,SD垂直于底面ABCD, (I)求证; (II)求面ASD与面BSC所成二面角的大小; (III)设棱SA的中点为M,求异面直线DM与SB所成角的大小 4. 在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点. (Ⅰ)证明:AC⊥SB; (Ⅱ)求二面角N—CM—B的大小; (Ⅲ)求点B到平面CMN的距离. 5. 如右下图,在长方体ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1. (1) 求二面角C—DE—C1的正切值; (2) 求直线EC1与FD1所成的余弦值. 6. 如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1. (I)证明PA⊥平面ABCD; (II)求以AC为棱,EAC与DAC为面的二面角的大小; (Ⅲ)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论. 7. 在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP. · B1 P A C D A1 C1 D1 B O H · (Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示); (Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP; (Ⅲ)求点P到平面ABD1的距离. 8. 如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 9. 如图,直三棱柱ABC-A1B1C1中,∠ACB=90o,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M. (Ⅰ)求证:CD⊥平面BDM; (Ⅱ)求面B1BD与面CBD所成二面角的大小. 10. 三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3. (1)求证 AB⊥BC ; (II)如果 AB=BC=2,求AC与侧面PAC所成角的大小.   11. 如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P—ABCD的体积; (Ⅱ)证明PA⊥BD. 12.已知四棱锥P—ABCD,底面ABCD是菱形,平面ABCD,PD=AD, 点E为AB中点,点F为PD中点. (1)证明平面PED⊥平面PAB; (2)求二面角P—AB—F的平面角的余弦值. 13. 如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F (1)证明PA//平面EDB; (2)证明PB⊥平面EFD; (3)求二面角C—PB—D的大小 14. 如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直, AB=,AF=1,M是线段EF的中点 (Ⅰ)求证AM∥平面BDE; (Ⅱ)求二面角A—DF—B的大小; 参考答案 1.解:(I)证明:因PA⊥底面,有PA⊥AB,又知AB⊥AD, 故AB⊥面PAD,推得BA⊥AE, 又AM∥CD∥EF,且AM=EF, 证得AEFM是矩形,故AM⊥MF. 又因AE⊥PD,AE⊥CD,故AE⊥面PCD, 而MF∥AE,得MF⊥面PCD, 故MF⊥PC, 因此MF是AB与PC的公垂线. (II)解:连结BD交AC于O,连结BE,过O作BE的垂线OH, 垂足H在BE上. 易知PD⊥面MAE,故DE⊥BE, 又OH⊥BE,故OH//DE, 因此OH⊥面MAE. 连结AH,则∠HAO是所要求的线AC与面NAE所成的角 设AB=a,则PA=3a, . 因Rt△ADE~Rt△PDA,故 2. 解:(Ⅰ);(Ⅱ)略. 3.解:(I)证明:如图1 图1 底面ABCD是正方形 底面ABCD DC是SC在平面ABCD上的射影 由三垂线定理得 (II)解: 底面ABCD,且ABCD为正方形 可以把四棱锥补形为长方体,如图2 面ASD与面BSC所成的二面角就是面与面所成的二面角, 又 为所求二面角的平面角 在中,由勾股定理得 在中,由勾股定理得 即面ASD与面BSC所成的二面角为 图2 图3 (III)解:如图3 是等腰直角三角形 又M是斜边SA的中点 面ASD,SA是SB在面ASD上的射影 由三垂线定理得 异面直线DM与SB所成的角为 4. 解法一:(Ⅰ)取AC中点D,连结SD、DB. ∵SA=SC,AB=BC, ∴AC⊥SD且AC⊥BD, ∴AC⊥平面SDB,又SB平面SDB, ∴AC⊥SB. (Ⅱ)∵AC⊥平面SDB,AC平面ABC, ∴平面SDB⊥平面ABC. 过N作NE⊥BD于E,NE⊥平面ABC, 过E作EF⊥CM于F,连结NF, 则NF⊥CM. ∴∠NFE为二面角N-CM-B的平面角. ∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC. 又∵NE⊥平面ABC,∴NE∥SD. ∵SN=NB,∴NE=SD===,且ED=EB. 在正△ABC中,由平几知识可求得EF=MB=, 在Rt△NEF中,tan∠NFE==2, ∴二面角N—CM—B的大小是arctan2. (Ⅲ)在Rt△NEF中,NF==, ∴S△CMN=CM·NF=,S△CMB=BM·CM=2. 设点B到平面CMN的距离为h, ∵VB-CMN=VN-CMB,NE⊥平面CMB,∴S△CMN·h=S△CMB·NE, ∴h==.即点B到平面CMN的距离为. 解法二:(Ⅰ)取AC中点O,连结OS、OB. ∵SA=SC,AB=BC, ∴AC⊥SO且AC⊥BO. ∵平面SAC⊥平面ABC,平面SAC∩平面 ABC=AC ∴SO⊥面ABC,∴SO⊥BO. 如图所示建立空间直角坐标系O-xyz. 则A(2,0,0),B(0,2,0),C(-2,0,0), S(0,0,2),M(1,,0),N(0,,). ∴=(-4,0,0),=(0,2,2), ∵·=(-4,0,0)·(0,2,2)=0, ∴AC⊥SB. (Ⅱ)由(Ⅰ)得=(3,,0),=(-1,0,).设n=(x,y,z)为平面CMN的一个法向量, ·n=3x+y=0, 则 取z=1,则x=,y=-, ·n=-x+z=0, ∴n=(,-,1), 又=(0,0,2)为平面ABC的一个法向量, ∴cos(n,)==. ∴二面角N-CM-B的大小为arccos. (Ⅲ)由(Ⅰ)(Ⅱ)得=(-1,,0),n=(,-,1)为平面CMN的一个法向量, ∴点B到平面CMN的距离d==. 5解:(I)以A为原点,分别为x轴,y轴,z轴的正向建立空间直角坐标系,则有 D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2) 于是, 设向量与平面C1DE垂直,则有 (II)设EC1与FD1所成角为β,则 6. (Ⅰ)证明 因为底面ABCD是菱形,∠ABC=60°, 所以AB=AD=AC=a, 在△PAB中, 由PA2+AB2=2a2=PB2 知PA⊥AB. 同理,PA⊥AD,所以PA⊥平面ABCD. (Ⅱ)解 作EG//PA交AD于G, 由PA⊥平面ABCD. 知EG⊥平面ABCD.作GH⊥AC于H,连结EH, 则EH⊥AC,∠EHG即为二面角的平面角. 又PE : ED=2 : 1,所以 从而 (Ⅲ)解法一 以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为 所以 设点F是棱PC上的点,则 令 得 解得 即 时, 亦即,F是PC的中点时,、、共面. 又 BF平面AEC,所以当F是棱PC的中点时,BF//平面AEC. 解法二 当F是棱PC的中点时,BF//平面AEC,证明如下, 证法一 取PE的中点M,连结FM,则FM//CE. ① 由 知E是MD的中点. 连结BM、BD,设BDAC=O,则O为BD的中点. 所以 BM//OE. ② 由①、②知,平面BFM//平面AEC. 又 BF平面BFM,所以BF//平面AEC. 证法二 因为 · B1 P A C D A1 C1 D1 B O H · 所以 、、共面. 又 BF平面ABC,从而BF//平面AEC. 7. 解(1) (2)略 (3) 8.(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE. ∵AD⊥PB,∴AD⊥OB, ∵PA=PD,∴OA=OD, 于是OB平分AD,点E为AD的中点,所以PE⊥AD. 由此知∠PEB为面PAD与面ABCD所成二面角的平面角, ∴∠PEB=120°,∠PEO=60° 由已知可求得PE= ∴PO=PE·sin60°=, 即点P到平面ABCD的距离为. (II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA. .连结AG. 又知由此得到: 所以 等于所求二面角的平面角, 于是 所以所求二面角的大小为 . 解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC. ∵AD⊥PB,∴BC⊥PB,FG⊥PB, ∴∠AGF是所求二面角的平面角. ∵AD⊥面POB,∴AD⊥EG. 又∵PE=BE,∴EG⊥PB,且∠PEG=60°. 在Rt△PEG中,EG=PE·cos60°=. 在Rt△PEG中,EG=AD=1. 于是tan∠GAE==, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan. 9.解法一:(I)如图,连结CA1、AC1、CM,则CA1=, ∵CB=CA1=,∴△CBA1为等腰三角形, 又知D为其底边A1B的中点,∴CD⊥A1B, ∵A1C1=1,C1B1=,∴A1B1=, 又BB1=1,∴A1B=2, ∵△A1CB为直角三角形,D为A1B的中点,CD=A1B=1,CD=CC1 又DM=AC1=,DM=C1M,∴△CDN≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM, 因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM (II)设F、G分别为BC、BD的中点,连结B1G、FG、B1F, 则FG∥CD,FG=CD∴FG=,FG⊥BD. 由侧面矩形BB1A1A的对角线的交点为D,知BD=B1D=A1B=1, 所以△BB1D是边长为1的正三角形,于是B1G⊥BD,B1G=, ∴∠B1GF是所求二面角的平面角 又B1F2=B1B2+BF2=1+()2=. ∴cos∠B1GF= 即所求二面角的大小为π-arccos 解法二:如图以C为原点建立坐标系 (I):B(,0,0),B1(,1,0),A1(0,1,1),D(,,), M(,1,0),(,,),(,-1,-1), (0,,-), ∴CD⊥A1B,CD⊥DM. 因为A1B、DM为平面BDM内两条相交直线, 所以CD⊥平面BDM (II):设BD中点为G,连结B1G,则G(-,,),∴,∴BD⊥B1G,又CD⊥BD,∴与的夹角等于所求二面角的平面角, cos 所以所求二面角的大小为π-arccos 10. ⑴证明:取AC中点O, 连结PO、BO. ∵PA=PC ∴PO⊥AC  又∵侧面PAC⊥底面ABC ∴PO⊥底面ABC 又PA=PB=PC ∴AO=BO=CO ∴△ABC为直角三角形 ∴AB⊥BC   ⑵解:取BC的中点为M,连结OM,PM,所以有OM=AB=,AO= ∴ 由⑴有PO⊥平面ABC,OM⊥BC,由三垂线定理得PM⊥BC ∴平面POM⊥平面PBC,又∵PO=OM=. ∴△POM是等腰直角三角形,取PM的中点N,连结ON, NC 则ON⊥PM, 又∵平面POM⊥平面PBC, 且交线是PM, ∴ON⊥平面PBC ∴∠ONC即为AC与平面PBC所成的角. ∴ ∴.故AC与平面PBC所成的角为. 11. 解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD. 作PO⊥平面在ABCD,垂足为O,连结OE. 根据三垂线定理的逆定理得OE⊥AD, 所以∠PEO为侧面PAD与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=3,四棱锥P—ABCD的体积 VP—ABCD= (Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得 P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0) 所以 因为 所以PA⊥BD. 解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,又知AD=4,AB=8,得 所以 Rt△AEO∽Rt△BAD. 得∠EAO=∠ABD. 所以∠EAO+∠ADF=90° 所以 AF⊥BD. 因为 直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD. 12.(1)证明:连接BD. 为等边三角形. 是AB中点,…………2分 面ABCD,AB面ABCD, 面PED,PD面PED,面PED.…………4分 面PAB,面PAB. ……………………6分 (2)解:平面PED,PE面PED, 连接EF,PED, 为二面角P—AB—F的平面角. ………… 9分 设AD=2,那么PF=FD=1,DE=. 在 即二面角P—AB—F的平面角的余弦值为…12分13.方法一: (1)证明:连结AC,AC交BD于O,连结EO ∵底面ABCD是正方形,∴点O是AC的中点 在中,EO是中位线,∴PA // EO 而平面EDB且平面EDB, 所以,PA // 平面EDB (2)证明: ∵PD⊥底面ABCD且底面ABCD,∴ ∵PD=DC,可知是等腰直角三角形,而DE是斜边PC的中线, ∴ ① 同样由PD⊥底面ABCD,得PD⊥BC ∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC 而平面PDC,∴ ② 由①和②推得平面PBC 而平面PBC,∴ 又且,所以PB⊥平面EFD (3)解:由(2)知,,故是二面角C—PB—D的平面角 由(2)知, 设正方形ABCD的边长为a,则 , 在中, 在中,,∴ 所以,二面角C—PB—D的大小为 方法二:如图所示建立空间直角坐标系,D为坐标原点,设 (1)证明:连结AC,AC交BD于G,连结EG 依题意得 ∵底面ABCD是正方形,∴G是此正方形的中心,故点G的坐标为且 ∴,这表明PA//EG 而平面EDB且平面EDB,∴PA//平面EDB (2)证明;依题意得,又,故 ∴ 由已知,且,所以平面EFD (3)解:设点F的坐标为,,则 从而所以 由条件知,,即 ,解得 ∴点F的坐标为,且 , ∴ 即,故是二面角C—PB—D的平面角 ∵,且 ,, ∴ ∴ 所以,二面角C—PB—D的大小为 14. 方法一 解: (Ⅰ)记AC与BD的交点为O,连接OE, ∵O、M分别是AC、EF的中点,ACEF是矩形, ∴四边形AOEM是平行四边形, ∴AM∥OE ∵平面BDE, 平面BDE, ∴AM∥平面BDE (Ⅱ)在平面AFD中过A作AS⊥DF于S,连结BS, ∵AB⊥AF, AB⊥AD, ∴AB⊥平面ADF, ∴AS是BS在平面ADF上的射影, 由三垂线定理得BS⊥DF ∴∠BSA是二面角A—DF—B的平面角 在RtΔASB中, ∴ ∴二面角A—DF—B的大小为60º (Ⅲ)设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥AD, ∵PQ⊥AB,PQ⊥AF,, ∴PQ⊥平面ABF,平面ABF, ∴PQ⊥QF 在RtΔPQF中,∠FPQ=60º, PF=2PQ ∵ΔPAQ为等腰直角三角形, ∴ 又∵ΔPAF为直角三角形, ∴, ∴ 所以t=1或t=3(舍去) 即点P是AC的中点 方法二 (Ⅰ)建立如图所示的空间直角坐标系 设,连接NE, 则点N、E的坐标分别是(、(0,0,1), ∴ =(, 又点A、M的坐标分别是 ()、( ∴ =( ∴=且NE与AM不共线, ∴NE∥AM 又∵平面BDE, 平面BDE, ∴AM∥平面BDF (Ⅱ)∵AF⊥AB,AB⊥AD,AF ∴AB⊥平面ADF ∴为平面DAF的法向量 ∵=(·=0, ∴=(·=0得 ,∴NE为平面BDF的法向量 ∴cos<>= ∴的夹角是60º 即所求二面角A—DF—B的大小是60º (Ⅲ)设P(t,t,0)(0≤t≤)得 ∴=(,0,0) 又∵PF和CD所成的角是60º ∴ 解得或(舍去), 即点P是AC的中点
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服